Christof Schroth

Krankenhauskeime: Mittels Künstlicher Intelligenz zu effektiven Teststrategien

Krankenhauskeime sind eine unsichtbare, aber tödliche Gefahr und ein großes Problem in unserem Gesundheitssystem. Schätzungen zufolge sterben allein in Deutschland jedes Jahr 10.000 bis 20.000 Menschen, weil sie sich im Krankenhaus mit Krankheitserregern infizieren, sog. nosokomiale Infektionen [1]. Besonders gefährlich sind…

Data Quality in Agriculture

Growing the Future: Overcoming Data Quality Problems in Agriculture

Farmers around the world, including in the EU, face many challenges. Their daily work and businesses need to be rethought in order to reduce the negative impact on the environment and achieve a sustainable economy in the long term. For…

Data Quality Assessment in Agriculture

Data Quality Assessment in Agriculture

Nowadays, it has become almost inconceivable to imagine agriculture without sensors, whether they are simple GPS devices to help farmers optimize their work in the fields, monitor livestock, or more complex equipment allowing advanced monitoring of animals (e.g. animal welfare…

Time Series Analysis: Outlier Detection

Time Traveling with Data Science: Outlier Detection (Part 3)

In our blog series on „Time Traveling with Data Science“, we previously introduced different tasks in time series analysis. In this blog post, we now present the task of Outlier Detection. Outliers are data so different from others that one…

Time Series Analysis (Change Point Detection)

Time Traveling with Data Science: Focusing on Change Point Detection in Time Series Analysis (Part 2)

In the first blog post of our „Time traveling with data science“ series, we presented several tasks related to the analysis of time series. In this post, we dive into the task called „change point detection“.   Changes in time series or…

Digitalisierung auf dem Land (DESIRA)

Digitalisierung auf dem Land: Digitaler Wandel für Verwaltung und Bevölkerung mit DESIRA

In vielen Regionen Europas sind ländliche Räume mit ähnlichen Herausforderungen konfrontiert. Diese beinhalten unter anderem eingeschränkte Jobperspektiven und Bildungsangebote, begrenzte Leistungen im Nahverkehr oder bei der medizinischen Versorgung sowie eine unterdurchschnittliche digitale Infrastruktur. Dabei bietet die Digitalisierung große Potentiale, das Leben auf dem Land attraktiver und nachhaltiger zu gestalten. An diesem Punkt setzt das Fraunhofer IESE an und identifiziert Handlungsoptionen für die Gestaltung der digitalen Transformation in ländlichen Kommunen. In Zusammenarbeit mit der Verbandsgemeinde Betzdorf-Gebhardshain werden in einem Living Lab Ursachen und Auswirkungen des digitalen Wandels untersucht, um mögliche Lösungsszenarien für ländliche Regionen zu entwickeln.

Time traveling with data science: Focusing on time series analysis

Time Traveling with Data Science: Focusing on Time Series Analysis (Part 1)

Time traveling with data science: In this blog series, we will cover some of the different techniques that make up time series analysis. This first post will provide an overview of the different types of analysis possible and answer the…

Digitale Abbildung von Nährstoffkreisläufen – Ein Schlüssel zu mehr Nachhaltigkeit in der Landwirtschaft?

In der Landwirtschaft sind gut funktionierende Lebensgemeinschaften wohlbekannt. Um die Potenziale einer gut funktionierenden Landwirtschaft effektiv zu nutzen, arbeiten wir im Fraunhofer Leitprojekt »Cognitive Agriculture (COGNAC)« an Lösungen, um Kernkompetenzen wie Data Science und Plattformökonomie mit Expert*innen aus der Landwirtschaft zu verknüpfen. Denn mit der Unterstützung von Data Science können Landwirt*innen einen deutlichen Mehrwert für ihren Betrieb erhalten. Wie genau z. B. eine digitale Abbildung von Nährstoffkreisläufen somit zu mehr Nachhaltigkeit in der Landwirtschaft beitragen kann, möchten wir in diesem Blog-Beitrag erläutern.