Dr. Julien Siebert

Julien Siebert is working as a researcher in the Data Science department of Fraunhofer IESE. He studied Artificial Intelligence and Engineering Science and got his PhD in Computer Science. His professional interests include data science processes, neural networks, complex systems, and non-linear modeling.

Open Source Large Language Models selbst betreiben

Ein Open Source Large Language Model (LLM, auf Deutsch: großes Sprachmodell) bietet zahlreiche Vorteile, und diese großen Sprachmodelle haben im Jahr 2023 einen weiten Sprung nach vorne gemacht: Sie sind sehr leistungsfähig geworden und können mittlerweile mit moderaten Hardwareanforderungen betrieben…

Was sind Large Language Models? Und was ist bei der Nutzung von KI-Sprachmodellen zu beachten?

In diesem Artikel tauchen wir in die faszinierende Welt der KI-Sprachmodelle ein, wobei der Schwerpunkt auf den Large Language Models (LLMs) liegt, zu denen bekannte Vertreter wie ChatGPT gehören. Sie wollen Künstliche Intelligenz für Ihr Unternehmen nutzen? Erfahren Sie, wie…

Dynamische Systems-of-Systems für Smart Cities der Zukunft

Im Projekt DynaSoS beschäftigte sich das Fraunhofer IESE seit Anfang 2022 mit dynamischen Systems-of-Systems (SoS). Ein System von Systemen beschreibt eine Konstellation verschiedener Systeme, die ein gemeinsames Ziel erreichen wollen, das allerdings keines der Systeme alleine erreichen könnte. Im Bereich…

Causal inference: An introduction on how to separate causal effects from spurious correlations in data

While „correlation does not imply causation“, it is possible to identify causal effects even in data that does not come from randomized controlled trials. Our AI expert, Dr. Julien Siebert, just published a paper (link) on the applications of statistical…

What are Complex Systems? – Understanding and Assessing Complex Phenomena

Taking into account the complexity of the systems around us is the first step towards understanding them. In this post, our expert Dr. Julien Siebert (Fraunhofer IESE) describes the most important characteristics of a complex system from his point of…

Time Series Analysis: Pattern Recognition

Time Traveling with Data Science: Pattern Recognition, Motifs Discovery and the Matrix Profile (Part 4)

In Part 4 of our Fraunhofer IESE blog series on „Time Traveling with Data Science“, we continue our journey in the field of time series analysis. In this blog post, our experts from Fraunhofer IESE and our guest author Markus…

Agile Machine-Learning-Prozesse für KMU

Agile Machine Learning-Prozesse für KMU

Agile Machine Learning-Prozesse können für kleine und mittelständische Unternehmen (KMU) ein wahrer Erfolgsfaktor sein: Agile Praktiken haben sich als großer Vorteil bei der Entwicklung von Software-Systemen bewährt. Mit dem Wandel zu datengetriebenen Produkten und Dienstleistungen müssen nun jedoch diese Software-Entwicklungsprozesse…

Time Series Analysis: Outlier Detection

Time Traveling with Data Science: Outlier Detection (Part 3)

In our blog series on „Time Traveling with Data Science“, we previously introduced different tasks in time series analysis. In this blog post, we now present the task of Outlier Detection. Outliers are data so different from others that one…

Scope Compliance

Scope Compliance – Die Rolle des Anwendungskontexts im Machine Learning

Im Rahmen unserer Blogreihe »Scope Compliance« beschäftigen wir uns mit der Bedeutung des Anwendungskontexts im Machine Learning. Im ersten Beitrag klären wir ein häufig anzutreffendes Missverständnis auf und arbeiten seine Implikationen für die Praxis heraus. Sie erfahren, warum es entscheidend…

Time Series Analysis (Change Point Detection)

Time Traveling with Data Science: Focusing on Change Point Detection in Time Series Analysis (Part 2)

In the first blog post of our „Time traveling with data science“ series, we presented several tasks related to the analysis of time series. In this post, we dive into the task called „change point detection“.   Changes in time series or…