Dr.-Ing. Pablo Oliveira Antonino

Dr. Pablo Oliveira Antonino leads the Virtual Engineering department at Fraunhofer IESE in Kaiserslautern, Germany. He earned his PhD in Computer Science from TU Kaiserslautern and brings extensive experience in the design, evaluation and integration of dependable embedded systems across diverse domains, including automotive, avionics, agricultural and construction machinery and the pharmaceutical industry. Under his leadership, the Virtual Engineering department develops the FERAL platform, which enables the creation of lightweight digital twins of embedded assets and simulation-based virtual prototypes, as well as the application of the Eclipse BaSyx middleware in the pharmaceutical domain. These initiatives contribute to advancing Physical AI — the convergence of physical systems, simulation models, and real-time digital twins to drive prediction, optimization, and continuous validation of complex systems. A further focus of his work lies in continuous engineering, combining simulation-based virtual validation, digital twins, and architecture-centric monitoring to shorten development cycles and enable systems to continuously adapt to change. --- Dr. Pablo Oliveira Antonino leitet die Abteilung Virtual Engineering am Fraunhofer-Institut für Experimentelles Software Engineering IESE in Kaiserslautern. Er promovierte in Informatik an der Technischen Universität Kaiserslautern und verfügt über umfangreiche Erfahrung in der Konzeption, Bewertung und Integration zuverlässiger eingebetteter Systeme in unterschiedlichen Domänen, darunter Automobilindustrie, Avionik, Land- und Baumaschinen sowie die pharmazeutische Industrie. Unter seiner Leitung entwickelt die Abteilung Virtual Engineering die Plattform FERAL, die die Erstellung leichter Digitaler Zwillinge eingebetteter Systeme und simulationsbasierter virtueller Prototypen ermöglicht, sowie die Anwendung der Middleware Eclipse BaSyx im pharmazeutischen Bereich. Diese Initiativen tragen maßgeblich zur Weiterentwicklung von Physical AI bei – der Verbindung physischer Systeme, Simulationsmodelle und Echtzeit-Digitaler Zwillinge zur Vorhersage, Optimierung und kontinuierlichen Validierung komplexer Systeme. Ein weiterer Schwerpunkt seiner Arbeit liegt in der Continuous Engineering-Methodik: Durch die Kombination von simulationsbasierter virtueller Validierung, Digitalen Zwillingen und architekturzentriertem Monitoring trägt sein Team dazu bei, Entwicklungszyklen zu verkürzen und Systeme befähigen, sich kontinuierlich an Veränderungen anzupassen.

Engineering Physical AI: How Digital Twins and Simulation are redefining Embedded Intelligence

Artificial Intelligence is no longer confined to the digital realm. Beyond generating text, images and code, AI is increasingly operating in the physical world – perceiving, reasoning, acting and adapting in real time. This new frontier is known as Physical…

Der FMI-Standard und seine Bedeutung für die Industrie

This article is also available in English: The FMI standard and its significance in industry FMI als Mittel zur Beschleunigung der Produktentwicklung Der Functional Mock-up Interface (FMI, auf Deutsch: Schnittstelle für Funktionsmodelle) Standard ist ein offener Standard, der erstmals 2010…

The FMI Standard and Its Significance in Industry

Dieser Artikel ist auch in Deutsch verfügbar: Der FMI-Standard und seine Bedeutung für die Industrie FMI as a means to accelerate product development The Functional Mock-up Interface (FMI) standard is an open standard first released in 2010 as a solution…

Simplifying Simulation Scenario Design and Execution: A Guide to Creating and Configuring FERAL Simulation Scenarios with YAML

Introduction Creating and configuring simulation scenarios is effort-intensive and time-consuming, mainly because each scenario requires a unique set of configurations, parameters, and settings, making the procedure time-consuming and error-prone. This complexity not only reduces productivity but also increases the learning…

Process Planning and Continuous Scheduling

Process Planning and Continuous Scheduling (Part 2)

In our last Fraunhofer IESE blog post, we introduced a holistic process planning and scheduling design called RL design, which addresses individualized production with small lot sizes. However, this design cannot deal with scheduling problems in the case of large…

Integrated Process Planning and Scheduling for Service-based Production with Deep Reinforcement Learning (Part 1)

Current industrial production scheduling approaches assume that process planning is performed before scheduling and that process plans are fully or at least partially available before scheduling starts. However, this is not the case in service-based production [5]. Service-based production provides…

Warum Software-defined Vehicles an Continuous Engineering in DevOps nicht vorbeikommen

Software-defined Cars oder auch Software-defined Vehicles charakterisieren, dass die Fahrzeugentwicklung – langjährigen Vorhersagen folgend – mittlerweile durch den Einsatz von Software dominiert ist. Die Begriffe beschreiben, dass sich andere Disziplinen nun an den Anforderungen der Software orientieren müssen und nicht…

Continuous Engineering (Continuous Planning and Continuous Budgeting)

Continuous Engineering for Industrie 4.0 (Part 2)

Future-proof decision making can be enabled by Continuous Planning and Continuous Budgeting with Continuous Integration of Digital Twins: Today we continue the series Continuous Engineering for Industrie 4.0, where we are exploring how continuous engineering practices should be instantiated to the automation domain to support Industrie 4.0 principles.

Continuous Engineering for Industrie 4.0

Continuous Engineering for Industrie 4.0 (Part 1)

Rolling out changes in complex systems is always a challenge. Regardless of whether a software component needs to be modified or whether a change in the communication network needs to be made, any change may lead to unexpected behavior. Continuous…