Joint press release by Fraunhofer IESE and Kleffmann Group – published at Agritechnica!

Autonomous Agriculture in 2045?
New Study about the Autonomous Agricultural Machinery Market

Press Release by Fraunhofer IESE and Kleffmann Group / 8.11.2019

The development and introduction of machines ranging from highly automated to driverless will have a strong impact on global agriculture. This inevitably raises the question of how fast and to what extent the new technologies will determine the market in the future.

The Fraunhofer Institute for Experimental Software Engineering IESE in cooperation with the Kleffmann Group (KG) has conducted a study that deals with the state of the art as well as with the future worldwide development of the autonomous agricultural machinery market. The study is based on expert assessments and uses an empirical modeling approach to develop possible future scenarios up to the year 2045. Four basic autonomy levels of agricultural production were defined in order to predict their future development. These are: 

  • entirely human-driven machines (i.e., with no or low technological assistance),  
  • assisted human-driven machines (i.e., with technological assistance, e.g., GPS-assisted driving), 
  •  supervised autonomous machines (i.e., using autonomous functions that are directly supervised by a human being)  
  • entirely autonomous machines (i.e., without human supervision) 

How will agricultural machinery develop in the future?

The key findings of the study are that:

  1. entirely human-driven systems will remain similar to the way they are today, but
  2. significant changes are expected for the other three classes: Assisted systems will be able to support more complex actions, being equipped with more cameras and more safety features. The class of supervised autonomous machines will evolve in a long-term perspective to lower demands on supervisor presence and qualification over time and field- and application specific autonomous actions will evolve towards more universal actions. The class of entirely autonomous machines will develop from pure demo systems via systems that act autonomously on the field with defined plans once they are there towards systems that receive rough planning via other systems and then act completely autonomously in the long run. Regarding the development of the tractor market, it turns out that
  3. the demand for tractors will be mainly driven by Asian countries, whereas the uptake of autonomous technology will be led by North America and Western Europe (see Table).

What will the agricultural production cycle look like in the future?

The necessary process steps during a cultivation period are tillage, seeding/planting, weed control, fertilization, plant protection and harvesting. Autonomization will have different effects on each level:

In the future, work steps with high tractive power, such as tillage or application of organic fertilizers, will be carried out autonomously by existing tractor systems, taking into account the lowest possible soil compaction. A similar development is predicted for transport and logistics tasks such as transport of harvested crops or manure.

The work steps seeding, mechanical weed control, mineral fertilization, and plant protection have high potential to be replaced in the future by autonomous machines or robot swarms. These work steps have the highest potential for increasing efficiency through site-specific applications. Through continuous improvement of the autonomous process flows, the competing factor area performance will be balanced in the future. Especially in row crops (e.g., corn and sugar beets), autonomous approaches already exist, with different robot sizes up to robot swarms.

In the harvesting step, novel approaches are conceivable, such as division into individual work steps. Initially, however, the focus will primarily be on automatic machine optimization during operation.

Summary

In summary, the ag machinery industry will set its focus even more on single plants and the work steps around the plant will be increasingly automated due to the potential increase in efficiency achieved through reduced use of resources. However, this shift towards autonomous agricultural systems is a rather slow process in the long run. In addition, the speed at which farmers will adopt autonomous systems will also differ substantially between different regions/markets. This is also a consequence of the different farm and production structures, of course. 

 


Fraunhofer Institute for Experimental Software Engineering IESE

Fraunhofer IESE is an institute of the Fraunhofer-Gesellschaft. The institute transfers innovative software development techniques, methods, and tools into industrial practice, assists companies in building software competencies customized to their needs, and helps them to establish a competitive market position.

Kleffmann Group

Kleffmann Group is the leading provider of agricultural market research services.  As a full-service research agency, KG provides key information on multiple agricultural sectors, including agricultural machinery, crop protection, fertilizer, seed and animal health.

For further information, please contact:

Jörg Dörr (Fraunhofer IESE)
Fraunhofer-Platz 1 - 67663 Kaiserslautern, Germany
Phone: +49 631 6800-1601
Email: joerg.doerr@iese.fraunhofer.de
https://www.iese.fraunhofer.de

Friederike Scholten-Buschhoff (Kleffmann Group)
Mühlenstr. 1 - 59348 Lüdinghausen, Germany
Phone: + 49 2591 9188 – 133
Fax: + 49 2591 9188 – 900
Email: Friederike.Scholten-Buschhoff@kleffmann.com
https://www.kleffmann.com

 

Here are going to the Study

Das Fraunhofer-Institut für Experimentelles Software Engineering IESE hat in Zusammenarbeit mit der Kleffmann-Group (KG) eine Studie durchgeführt, die sich mit dem Stand der Technik sowie mit der zukünftigen weltweiten Entwicklung des Marktes für autonome Landmaschinen beschäftigt. Die Studie basiert auf Expertenbefragungen und entwickelt mithilfe eines empirischen Modellierungsansatzes mögliche Zukunftsszenarien bis zum Jahr 2045. Dabei wurden vier grundlegende Autonomieebenen der landwirtschaftlichen Produktion unterschieden, um ihre zukünftige Entwicklung vorherzusagen. Diese sind:

• ausschließlich menschengesteuerte Maschinen (d.h. ohne oder mit geringer technologischer Unterstützung),
• menschengesteuerte Maschinen mit Assistenzsystemen (d.h. mit technologischer Unterstützung, z.B. GPS-gestütztes Fahren),
• überwachte autonome Maschinen (d.h. mit autonomen Funktionen, die direkt von einem Menschen überwacht werden)
• völlig autonome Maschinen (d.h. ohne menschliche Aufsicht)

Wie sieht die zukünftige Entwicklung bei Landmaschinen aus?
Die Studie kommt zu folgenden Ergebnissen:

(1) Ausschließlich menschengesteuerte Systeme werden so bleiben, wie sie heute sind, aber
(2) für die anderen drei Klassen werden erhebliche Änderungen erwartet: Assistenzsysteme werden in der Lage sein, komplexere Betriebsvorgänge zu unterstützen, da sie mit mehr Kameras und Sicherheitsfunktionen ausgestattet sein werden. In der Langzeitperspektive wird sich die Klasse der überwachten autonomen Maschinen weiterentwickeln, mit geringeren Anforderungen an die Anwesenheit und Qualifikation einer Aufsichtsperson; die bereichs- und anwendungsspezifischen autonomen Bearbeitungsschritte werden in universellere Aktions- und Arbeitsformen übergehen. Die Klasse der völlig autonomen Maschinen wird sich von reinen Demosystemen über die Zwischenstufe von Systemen, die mit definierten Plänen autonom auf dem Feld agieren, langfristig hin zu Systemen entwickeln, die eine Grobplanung über andere Systeme erhalten und dann völlig autonome Aktionen durchführen.
(3) In Bezug auf die Entwicklung des Traktorenmarktes zeigt sich, dass die Nachfrage nach Traktoren hauptsächlich von den asiatischen Ländern vorangetrieben werden wird, während die Einführung autonomer Technologien von Nordamerika und Westeuropa angeführt wird (siehe Tabelle 1).

Wie wird der landwirtschaftliche Produktionszyklus zukünftig aussehen?
Die üblichen Bearbeitungsschritte im Laufe eines Anbaujahres sind Bodenbearbeitung, Aussaat, Unkrautbekämpfung, Düngung, Pflanzenschutz und Ernte. Die Autonomisierung hat unterschiedliche Auswirkungen auf jeden dieser Bereiche:

Zukünftig werden Arbeitsschritte mit hohen Anforderungen an die Zugleistung, wie z.B. die Bodenbearbeitung oder die Ausbringung von organischem Dünger, von bestehenden Traktorsystemen und Anbaugeräten unter Berücksichtigung einer möglichst geringen Bodenverdichtung autonom durchgeführt. Eine ähnliche Entwicklung wird für Transport- und Logistikaufgaben wie den Transport von Erntegut oder Gülle erwartet.

Die Arbeitsschritte Saatgut, mechanische Unkrautbekämpfung, mineralische Düngung und Pflanzenschutz haben ein hohes Potenzial, in Zukunft durch autonome Maschinen oder Roboterschwärme ersetzt zu werden. Diese Arbeitsschritte haben durch teilflächenspezifische Applikationen das höchste Potenzial zur Effizienzsteigerung. Durch die kontinuierliche Verbesserung der autonomen landwirtschaftlichen Systeme wird der konkurrierende Faktor Flächenleistung in Zukunft ausgeglichen. Insbesondere bei Reihenkulturen (z.B. Mais und Zuckerrüben) gibt es bereits autonome Ansätze, mit unterschiedlichen Robotergrößen bis hin zu Roboterschwärmen.

Bei der Ernte sind neue Ansätze denkbar, wie z.B. die Aufteilung in einzelne Arbeitsschritte. Zunächst liegt der Fokus jedoch vor allem auf der automatischen Maschinenoptimierung im laufenden Betrieb.

Zusammenfassung
Zusammenfassend zeigt sich, dass durch die zunehmende Automatisierung in der Landwirtschaft der Fokus stärker auf die einzelne Pflanze gerichtet sein wird und die Arbeitsschritte rund um die Pflanze aufgrund der potenziellen Effizienzsteigerung durch reduzierten Ressourceneinsatz zunehmend automatisiert werden.

Jedoch ist erkennbar, dass der Wandel hin zu autonomen Agrarsystemen einem eher langsamen, aber kontinuierlichen Prozess folgt. Die Geschwindigkeit, mit der die Landwirte autonome Systeme einführen werden, wird zwischen den verschiedenen Regionen/Märkten allerdings erheblich variieren. Dies ist natürlich auch eine Folge der unterschiedlichen Betriebs- und Produktionsgrößen und -strukturen.