
56 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 6 / $ 3 3 . 0 0 © 2 0 1 6 I E E E

Embedded-
Software
Architects
It’s Not Only
about the Software

Pablo Oliveira Antonino, Andreas Morgenstern, and Thomas Kuhn,
Fraunhofer Institute for Experimental Software Engineering

// Computer scientists’ knowledge of embedded-

systems concepts such as controllers and

actuators is usually limited. So, the role of

embedded-software architect is often played

by engineers from other � elds who have a

limited education in software architecture. //

IN THE MID-1990S, software ar-
chitecture had its boom, triggered
mainly by the Software Engineer-
ing Institute’s work, Rational’s 4+1
views, and Siemens’ four views.1

From that point on, software ar-
chitecture gained great visibility in
the computer science community.
Consequently, many of the mature
architecture- centered methodologies

and tools have been developed mainly
by the computer science community.2

Computer scientists have been—
and the great majority still are—
educated with a mind-set concentrat-
ing on the structure of information
systems. These systems traditionally
rely on

• standard infrastructures to

support a software platform,
which provide commonly used
base services and abstractions
from the hardware, and

• virtualization to separate inde-
pendent software systems from
each other and improve robust-
ness and availability through
live migration.3

However, with the advent of em-
bedded systems, which has been fol-
lowed by the emergence of cyber-
physical systems,4 a tremendous
demand has arisen for professionals
who understand both software and
hardware speci� cations. Because of
computer scientists’ traditional edu-
cation, they have dif� culty reasoning
on aspects such as communication
bus capacity, how delays and jitter
affect control loop behavior, and
functions realized by solenoids and
other electromechanical devices.5

Because computer scientists gen-
erally lack knowledge of embedded
systems’ nonsoftware properties, el-
ectrical and mechanical engineers
are assuming roles that computer
scientists exclusively used to play,
such as the role of architect. This
wouldn’t be a problem if these en-
gineers had an architecture-related
formal education or had developed
this competence throughout their
career. But in companies for which
we provide architecture consultancy,
we’ve observed that the architects
have limited architecture knowl-
edge. This has been the case in the
automotive and transportation, au-
tomation and plant-engineering,
and medical- device domains. (The
average teams for which we provide
consulting have more than 150 engi-
neers, are globally distributed, and
deal with systems of approximately
10 MLOC.)

Here, we look in detail at the

FOCUS: THE ROLE OF THE SOFTWARE ARCHITECT

Authorized licensed use limited to: FhI fur Experimentelles Software Engineering. Downloaded on June 25,2025 at 12:06:00 UTC from IEEE Xplore. Restrictions apply.

NOVEMBER/DECEMBER 2016 | IEEE SOFTWARE 57

problems we’ve observed with
embedded- software architects, the
problems’ causes, and possible ways
to deal with them.

Recurring Problems
In our projects, we’ve identi� ed the
following two main problems.

Incompleteness and Inconsistencies
Due to Missing Traceability
 The development of software-based
systems, regardless of whether or not
they’re embedded, involves differ-
ent stakeholders, such as the project
manager, developers, and users. They
all have different concerns to be un-
derstood, prioritized, and realized.

One main responsibility of the ar-
chitect is to identify core aspects that
will drive the architecture design,
which centers on identifying con-
cerns that are risky and expensive to
change—the architecture drivers (see
Figure 1). In industry projects, we’ve
observed that embedded- software
architects neglect the fundamen-
tal traceability that should exist be-
tween the architecture drivers and
architecture design. Instead, they
tend to focus on isolated parts of the
architecture design. Other scientists
have also observed this situation in
cases involving medical devices sub-
mitted for US Food and Drug Ad-
ministration approval.6

For example, we’ve often en-
countered architects—usually non-
computer scientists—who focus on
only the hardware and network
speci� cations and assume that the
software engineers will deliver the
software in an optimal state. On the
other hand, we’ve observed experi-
enced architects—mainly computer
scientists—who focus on only the
software and assume that the elec-
trical and mechanical engineers are
aware of all the assumptions and

constraints necessary to properly de-
ploy a complex piece of software in
the hardware. So, the whole archi-
tecture speci� cation is often incom-
plete and inconsistent, which results
in an intense effort to properly inte-
grate the embedded system’s various
aspects.

Architectural Smells
Martin Fowler introduced the term
“bad smells” in the software con-
text.7 He related them to character-
istics in source code snippets that
negatively affect quality aspects such
as testability and reusability.

Similarly, an architectural smell is
a “commonly used architectural de-
cision that negatively impacts system
quality.”8 Here are two examples:

• An Extraneous Connector oc-
curs when two connectors of
different types connect a pair of
components.

• A Scattered Functionality occurs
when multiple components real-
ize the same high-level concern
and some of them are respon-
sible for orthogonal concerns.

Our intention isn’t to present a cata-
log of architectural smells but to dis-
cuss how the pro� les of embedded-
systems architects have contributed
to these smells’ occurrence.

For example, in Figure 2a, the ve-
hicle sensor processor computes sen-
sor measures and makes them avail-
able on the CAN (Controller Area
Network) bus. Despite this archi-
tecture practice being common, an
Extraneous Connector often occurs
because of the additional direct con-
nection between two components
deployed on the same ECU (Elec-
tronic Control Unit), as indicated in
Figure 2a by the obstacle distance
request sent from the cruise control
to the vehicle sensor processor. This
additional dependency might result
in challenges for evolving that pro-
cessor. This architectural smell also
implies a deployment constraint be-
cause the vehicle speed control and
cruise control must be deployed on
the same ECU.

In this context, one possible so-
lution to the Extraneous Connector
involves the AUTOSAR (Automotive
Open System Architecture; www

Architecture drivers

Architecture design

Drive

Realize

Realize

Deploy

Business
drivers

Stakeholders

Functional
requirements

Quality
requirements Constraints

Function networks

Software
entities

Hardware
entities

FIGURE 1. Architecture drivers and architecture perspectives as the main building

blocks of architecture speci� cations. Architecture drivers are critical aspects that are

risky and expensive to change.

Authorized licensed use limited to: FhI fur Experimentelles Software Engineering. Downloaded on June 25,2025 at 12:06:00 UTC from IEEE Xplore. Restrictions apply.

58 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: THE ROLE OF THE SOFTWARE ARCHITECT

.autosar.org) reference architecture.
Figure 2b shows this solution, in
which every information exchange
between software components is
through an AUTOSAR Virtual
Function Bus.

Had the embedded-software ar-
chitects taken computer science
courses, they would have learned
such strategies for overcoming archi-
tectural smells. For example, some
courses teach architecture tactics
such as multilayers and microkernels.

Other courses teach the “Gang of
Four” design patterns9 not only as a
way to improve low-level design but
also to mold the students’ mind-set
to consider these patterns at the ar-
chitecture level.

The consequence of having ar-
chitects who aren’t familiar with
these best practices is the enormous
frequency of architectural smells,
such as those we’ve often found in
the embedded architectures we’ve
reviewed. We’ve received several

requests to assess an architecture’s
quality because of the dif� culties
companies faced in evolving their
systems when system complexity in-
creased beyond a certain limit. In
many cases, a key reason for these
dif� culties was well-known archi-
tectural smells. Also, in most of
these cases, the architects had no
computer science education and
were barely familiar with architec-
ture best practices. So, they designed
the architecture to address only a

Wheel rotation

<<Device>>
Vehicle control unit

Distance sensor value

Wheel rotation
speed sensor

Front ultrasonic
distance sensor

Vehicle sensor
processor

+ Vehicle speed: int
+ Obstacle distance: int
– ... : int

Cruise control

Transmission
control

Obstacle distance
request

Vehicle speed,
obstacle distance, ...

Vehicle speed

Vehicle
speed, ...

CAN driver interface

CAN driver interface

Obstacle distance

<<Communication network>>
CAN bus

<<Device>>
Transmission control unit

Wheel rotation

<<Device>>
Vehicle control unit

Distance sensor value

Wheel rotation
speed sensor

Front ultrasonic
distance sensor

Vehicle sensor
processor

+ Vehicle speed: int
+ Obstacle distance: int
– ... : int

Cruise control

AUTOSAR virtual functional bus

Transmission
control

Vehicle speed

CAN driver interface

CAN messages

CAN driver interface

Vehicle
speed,

obstacle
distance, ...

Vehicle speed,
obstacle distance, ...

Vehicle
speed,
obstacle
distance

<< Exposed interface>> AUTOSAR VFB interface

<< Exposed interface>>
AUTOSAR VFB interface

<<Communication network>>
CAN bus

<<Device>>
Transmission control unit

(a) (b)

FIGURE 2. Dealing with an architectural smell. (a) An Extraneous Connector smell, which is often found in embedded software.

(b) A mitigation strategy using the AUTOSAR (Automotive Open System Architecture) architecture. Architectural smells are architectural

decisions that negatively impact system quality. CAN stands for Controller Area Network.

Authorized licensed use limited to: FhI fur Experimentelles Software Engineering. Downloaded on June 25,2025 at 12:06:00 UTC from IEEE Xplore. Restrictions apply.

NOVEMBER/DECEMBER 2016 | IEEE SOFTWARE 59

particular set of features and not to
cope with evolutionary processes.

Information systems architectures
aren’t completely free of architectural
smells, either. However, our discus-
sions with colleagues who work ex-
clusively on information systems
led us to conclude that embedded-
software architectures suffer from
architectural smells more than infor-
mation systems architectures do.

The Problems’ Sources
The recurring problems we just
described have the following two
sources.

Misunderstood Responsibilities
A recurring question is, what’s the
architect’s role in the development
team? Peter Eeles and Peter Cripps
understood that architects not only
are software project technical leads
but also are responsible for the suc-
cess or failure of the project as a
whole.10 Eeles and Cripps argued
that, to achieve these goals, archi-
tects must

• lead software design teams,
monitoring code quality and test
coverage and ensuring that the
system works as expected;

• understand the development pro-
cess and ensure that the teams
involved in development will
follow it;

• understand the business
domain— its concepts and
terminologies;

• be good communicators; and
• be decision makers.

Our experience has shown that
embedded-software architects must
also

• lead hardware develop-
ment teams and monitor the

hardware’s architecture-relevant
properties and

• understand, as much as is neces-
sary, the development process
for all relevant portions of the
system’s subsystems (software,
hardware, electrical, and their
integration).

In the companies for which we
provide consulting, we never found
an architect with these seven char-
acteristics. Rather, the architects
focused only on the system’s tech-
nical aspects that were closest to
their strengths. For example, archi-
tects with a computer science back-
ground tended to focus on only the
software artifacts, making unreal-
istic hardware assumptions. Elec-
trical and mechanical engineers
tended to go in the opposite direc-
tion, focusing mostly on sensors, ac-
tuators, communication buses, � eld-
programmable gate arrays, and other
hardware artifacts and neglecting
the importance of sound software
structures.

This technical experience is im-
portant because architects are sup-
posed to make critical, long-term
technical decisions. In addition, suc-
cessful architects must have lead-
ership and social skills. We’ve ob-
served that some of our customers
assigned the architect role to people
who didn’t � t the architect’s pro-
� le. In spontaneous interviews with
embedded- software architects, we
discovered that most of them got
their role because they were great en-
gineers and had been working for the
company for years. But we also found
that many of them � t the pro� le of a
senior engineer, not an architect.

Obviously, architects need com-
munication skills, as Eeles and Cripps
also highlighted. An embedded-
systems architect might not have the

technical capabilities to approach
software and hardware artifacts
equally. So, besides a general notion
of both groups of artifacts and how
they relate to each other, an architect
should know who can dig into detail
in each group of artifacts, assess the
risks, and make the appropriate ar-
chitecture decisions.

Aversion to Models or
Inadequate Abstraction Skills
A considerable number of computer
scientists are still skeptical about us-
ing models to document software-
based systems. Often, engineers with
a computer science education have
told us that the architects were
“those who make more money than
we do and whose main duty is to
draw boxes and lines that represent
a system that will soon become out-
dated.” They claimed that the soft-
ware being implemented was so sub-
ject to changes that investing time in
coding was more worthwhile than
investing in documenting or model-
ing the architecture. Some of them
even claimed that if the software is
written well, the source code is the
only documentation needed.

On the other hand, we’ve ob-
served that electrical and mechanical
engineers who were either involved
in pure implementation tasks or had
the role of architect saw the value
of detailed model-based architecture
documentation. However, we’ve also
observed their limited ability to think
on multiple abstraction levels. One
reason for this is that their education
didn’t prepare them properly. In con-
trast, many computer scientists have
this abstracting capability. Neverthe-
less, as we mentioned before, many
of them didn’t see the value in docu-
menting or modeling the architecture
because the source code was all that
mattered. At this point, a dissonant

Authorized licensed use limited to: FhI fur Experimentelles Software Engineering. Downloaded on June 25,2025 at 12:06:00 UTC from IEEE Xplore. Restrictions apply.

60	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: THE ROLE OF THE SOFTWARE ARCHITECT

situation existed. Some professionals
had the skills to perform the task but
didn’t see its value; the other group
saw the value but wasn’t educated to
do the task properly.

When comparing these two
groups, we understand that because
mechanical and electrical engineers
are used to electrical, hydraulic, and
other models necessary to their do-
main, they see value in architecture
models. They have this mind-set be-
cause the systems they usually build
have something to do with tangible
artifacts such as valves, pumps, and
printed circuits, which must be well
understood and analyzed before
realization.

Regarding pure software, which
is the main (and usually the only)
artifact that traditional computer
scientists manipulate, they have, in
a certain sense, too much freedom
to realize their products. For exam-
ple, if an information system per-
forms an erroneous operation, in
many cases a rollback followed by
a code fix, recompilation, and soft-
ware redeployment is enough to re-
cover from a critical software fail-
ure. However, when the software
controls safety-critical embedded
systems such as those in airplanes,
cars, and medical devices, more is
required than the usual architecture
practice as defended by some of the
computer scientists we mentioned.

We’ve actually observed wide-
spread adoption of models in the
embedded-systems domain. For in-
stance, our customers in the trans-
portation domain have made these
comments:

Ninety percent of the software em-
bedded in our systems is generated
from models.

For the critical parts of our system,

we completely generated the code.

I do not trust code written by
humans.

Engineers who do not welcome
model-based engineering are not
welcome in our company.

Two important reasons to adopt
architecture specification of embed-
ded systems are to

•	 communicate the software prop-
erties to the engineers responsi-
ble for the nonsoftware artifacts
and

•	 make the embedded system
architecture specification as a
whole (software plus hardware)
consistent.

In this case, the architecture docu-
mentation fulfills one of its pur-
poses: to facilitate communication
among the different stakeholders in
development.

We don’t claim that the whole
architecture model should be cre-
ated before implementation starts.
Rather, the architecture documenta-
tion created before implementation
should contain just enough to docu-
ment and communicate the system
aspects that are risky and expensive
to change.

Using Adequate Tools
and Methodologies
Several approaches offer guidance
for performing architecture activi-
ties. One such approach is the elici-
tation and documentation of ar-
chitecture drivers using scenarios.
Another is architecture evaluation
using Fraunhofer’s RATE (Rapid
Architecture Evaluation) and the
Software Engineering Institute’s
ATAM (Architecture Tradeoff

Analysis Method). Both approaches
offer great support and have been
used around the world for both em-
bedded systems and information
systems.

A strong tendency exists to asso-
ciate specification of the architecture
design with UML (www.uml.org)
or SysML (Systems Modeling Lan-
guage; www.sysml.org), which are
strongly influenced by the computer
science community. Unfortunately,
these approaches by themselves
aren’t specific enough for properly
architecting embedded systems. But
approaches exist that have been suc-
cessfully used for this, which we de-
scribe next.

AADL (Architecture Analysis and
Design Language; www.aadl.info),
which the Society for Automotive
Engineers defined in 2012, offers
tailored support for dependability
aspects such as safety and security
in architecture specifications.11 It
also provides the means to capture
architecture concepts from different
abstraction levels. AADL has been
widely used in the development of
safety-critical systems—for example,
by the SAVI (System Architecture
Virtual Integration; http://savi.avsi
.aero) initiative (which includes
companies such as Airbus, Boeing,
and Embraer), many other indus-
tries in Europe and Asia, and the US
Army.

SCADE is part of the SCADE
Suite (www.esterel-technologies.com
/products/scade-suite). It supports
the specification of control flows
and state machines for control logic,
which are important architecture
principles of safety-critical systems.
SCADE has been successfully used
in the aerospace, defense, and rail-
ways industries, such as in the design
of safety-critical systems of the Air-
bus A380 and Boeing 787.

Authorized licensed use limited to: FhI fur Experimentelles Software Engineering. Downloaded on June 25,2025 at 12:06:00 UTC from IEEE Xplore. Restrictions apply.

	 NOVEMBER/DECEMBER 2016 | IEEE SOFTWARE� 61

EAST-ADL (Electronics Archi
tecture and Software Technology—
Architecture Description Language)
is an architecture description lan-
guage for automotive embedded sys-
tems.12 It was designed in the con-
text of several European research
projects. EAST-ADL defines archi-
tecture views, which support speci-
fying the structure and behavior of
vehicle features and their realization
through software and hardware. It
does this with precise traceability
between the elements.

The PREEvision (www.vector
.com/preevision) tool also supports
architecting automotive embedded
systems, using the SPES (Software
Platform Embedded Systems) 2020
methodology.5 Many of our custom-
ers from the transportation industry
in Europe and the US have adopted
PREEvision. We’ve seen how it helps
architects with different educational
backgrounds design complex embed-
ded systems.

The Fraunhofer Embedded Mod-
eling Profile also centers on SPES
2020.13 It continues to evolve through
its use in architecture consultancy ser-
vices in various embedded domains
such as the automotive domain, ag-
riculture, avionics, and astrophysics.
In the astrophysics domain, the ar-
chitects are physicists who are using
the profile to architect gamma-ray
telescope controller systems’ software
and hardware.14 The Fraunhofer Em-
bedded Modeling Profile is available
for the Enterprise Architect (www
.sparxsystems.com) and MagicDraw
(www.nomagic.com) tools.

One front that still requires thor-
ough investigation is the modeling of
architectures of embedded systems
that are tightly integrated into infor-
mation systems—the cyber-physical
systems we discussed earlier. Owing
to the level of integration needed to

ensure that a cyber-physical system
works properly, it’s necessary to rep-
resent concepts from both types of
systems with the appropriate degree
of abstraction. Methodologies ex-
ist that support the architecture ac-
tivities of information and embed-
ded systems, but they’re most likely
disjoint and often conflict with each
other. So, they must be evolved into
a more cohesive methodology.

W e’ve identified the need
to address architecture
in the formal educa-

tion of not only computer science
students but also students in the
other domains most likely involved
in embedded-system development,
such as electrical and mechanical en-
gineering. We’re not proposing how
to update the university curricu-
lum to integrate architecture-related
courses; we simply wish to indicate
measures that should be consid-
ered to educate embedded-software

architects. (For more on educating
practitioners, see the sidebar.)

First, universities should con-
sider teaching software architecture
in non-computer science courses
covering such topics as electrical
engineering, mechanical engineer-
ing, and mechatronics and in other
courses that deal mainly with arti-
facts that have a close relationship
with software.

Second, computer science courses
should emphasize the architecture
discipline, not just molding computer
scientists to think beyond the source
code but also teaching them how to
better architect software-based sys-
tems. We’re not talking about teach-
ing design patterns, which is also a
fundamental topic. Rather, we’re fo-
cusing on the architect’s role and on
educating students in high-level ar-
chitecture design and assessment.

Finally, computer science courses
should also teach embedded-system
basics such as controllers, sensors,
actuators, and buses. Someone might

INDUSTRY
PRACTITIONERS

BECOMING ARCHITECTS—
LOOKING FORWARD
Before an industry practitioner is assigned the role of software architect, it’s im-
portant to identify whether that person has an architect’s required characteristics,
such as those we discuss in the main article. For those who fit the profile, it’s cru-
cial to tailor their capabilities with complementary education that addresses tradi-
tional architecture activities such as architecture construction and assessment.

Regarding those who provide such coaching, it’s important to consider that
many companies that offer architecture consultancy services have a hard time
supporting embedded-systems companies. This is because these consultancy
companies normally consist of computer scientists with little or almost no knowl-
edge of architecting embedded systems. The need exists for professionals with
knowledge of not only architecture but also embedded systems.

Authorized licensed use limited to: FhI fur Experimentelles Software Engineering. Downloaded on June 25,2025 at 12:06:00 UTC from IEEE Xplore. Restrictions apply.

62 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: THE ROLE OF THE SOFTWARE ARCHITECT

claim that computer-engineering
courses, not computer science courses,
are the ones intended to prepare
such professionals. If this is the
case, computer-engineering courses
should address software architec-
ture principles, following the same
recommendations we’ve given for
electrical and mechanical engineer-
ing. Nevertheless, with the advent
of cyber-physical systems, computer
scientists who have at least a basic
knowledge of embedded systems will
have an advantage in industry over
those lacking this knowledge.

References
1. M. Shaw and P. Clements, “The

Golden Age of Software Architec-

ture,” IEEE Software, vol. 23, no. 2,

2006, pp. 31–39.

2. P. Kruchten, H. Obbink, and J. Staf-

ford, “The Past, Present, and Future

of Software Architecture,” IEEE Soft-

ware, vol. 23, no. 2, 2006, pp. 22–30.

3. P. Liggesmeyer and M. Trapp, “Trends

in Embedded Software Engineering,”

IEEE Software, vol. 26, no. 3, 2009,

pp. 19–25.

4. “Cyber-Physical Systems,” Program

Solicitation NSF 16-549, US Nat’l

Science Foundation, 2016; www.nsf

.gov/pubs/2016/nsf16549/nsf16549.htm.

5. K. Pohl et al., Model-Based Engi-

neering of Embedded Systems: The

SPES 2020 Methodology, Springer,

2012.

6. P. Maeder et al., “Strategic Trace-

ability for Safety-Critical Projects,”

IEEE Software, vol. 30, no. 3, 2013,

pp. 58–68.

7. M. Fowler, Refactoring: Improv-

ing the Design of Existing Code,

Addison-Wesley Longman, 1999.

8. J. Garcia, D. Popescu, and G. Ed-

wards, “Toward a Catalogue of

Architectural Bad Smells,” Architec-

tures for Adaptive Software Systems,

LNCS 5581, Springer, 2009, pp.

146–162.

9. E. Gamma et al., Design Patterns:

Elements of Reusable Object-

Oriented Software, Addison-Wesley

Longman, 1995.

10. P. Eeles and P. Cripps, The Process

of Software Architecting, Addison-

Wesley Professional, 2010.

11. Architecture Analysis & Design Lan-

guage (AADL)—SAE AS 5506, SAE

Int’l, 2012.

12. P. Cuenot et al., “Managing Com-

plexity of Automotive Electronics

Using the EAST-ADL,” Proc. 12th

IEEE Int’l Conf. Eng. Complex

Computer Systems (ICECCS 07),

2007, pp. 353–358.

13. T. Kuhn and P.O. Antonino, “Model-

Driven Development of Embedded

Systems,” Proc. 2014 Embedded Soft-

ware Eng. Congress, 2014, pp. 47–53.

14. I. Oya et al., “The Software Archi-

tecture to Control the Cherenkov

Telescope Array,” Proc. SPIE, vol.

9913, 2016; http://proceedings

.spiedigitallibrary.org/proceeding

.aspx?articleid=2540562.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

PABLO OLIVEIRA ANTONINO is a senior engineer and

project manager at the Fraunhofer Institute for Experimental

Software Engineering. He constructs and analyzes architec-

tures of dependable embedded systems for domains such

as the automotive domain, agriculture, medical devices, and

avionics. Antonino received a PhD in computer science from the

University of Kaiserslautern. Contact him at pablo.antonino@

iese.fraunhofer.de.

ANDREAS MORGENSTERN is an engineer at the Fraunhofer

Institute for Experimental Software Engineering. His research

interests include behavior modeling in software architecture

models and integrating formal methods such as static analysis

into software engineering. Morgenstern received a PhD in

computer science from the University of Kaiserslautern. Contact

him at andreas.morgenstern@iese.fraunhofer.de.

THOMAS KUHN heads the Fraunhofer Institute for Experimen-

tal Software Engineering’s Embedded Software Engineering de-

partment. His research interests include the virtual development

of embedded systems and the substantiating of architecture

decisions on the basis of measureable facts obtained by archi-

tecture prototypes. Kuhn received a PhD in computer science

from the University of Kaiserslautern. Contact him at thomas

.kuhn@iese.fraunhofer.de.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

Authorized licensed use limited to: FhI fur Experimentelles Software Engineering. Downloaded on June 25,2025 at 12:06:00 UTC from IEEE Xplore. Restrictions apply.

