
SyStemS engineering Study:  
ChallengeS and BeSt PraCtiCeS 
 

Jens Heidrich
Binish Tanveer
Rolf van Lengen
Thomas Kleinberger
Liubov Gorodilova
Thomas Kuhn
Martin Becker
Thomas Bauer
Andreas Morgenstern

F R A U N H O F E R  I N S T I T U T E  F O R  E x p E R I M E N TA L  S O F T w A R E  E N G I N E E R I N G  I E S E



 

Copyright © Fraunhofer IESE 2016 2 

Table of Contents 

Management Summary 4 

1 Trends towards Systems Engineering 7 
1.1 Trend towards System Integration 7 
1.2 Motivation for Systems Engineering 8 
1.3 Background Information 10 
1.3.1 Industrie 4.0 10 
1.3.2 Cyber-Physical Systems (CPS) 11 
1.3.3 Internet of Things (IoT) 11 
1.3.4 Cloud Computing 11 
1.3.5 Internet of Services 12 
1.3.6 Industrial Internet 12 
1.3.7 Big Data 12 

2 Related Studies on Systems Engineering 13 
2.1 Model-Based Systems Engineering (MBSE) Methodologies 13 
2.2 Improving the Integration of Program Management and Systems 

Engineering 14 
2.3 Systems Engineering in Industrial Practice 15 
2.4 Systems Engineering Effectiveness 16 
2.5 Model-Driven Development 17 

3 Systems Engineering Study Results 19 
3.1 Context 20 
3.2 Challenges 22 
3.3 Solution Approaches 27 
3.4 Outlook and Capabilities 31 
3.5 Discussion of Potential Threats and Limitations 33 

4 Study Key Outcomes and Recommendations 35 
4.1 Key Outcomes 35 
4.2 Recommendations and Areas of Activity 37 
4.2.1 Organizational Development 37 
4.2.2 Technical Development 38 



 

Copyright © Fraunhofer IESE 2016 3 

5 Selected Industrial Practices and Cases 40 
5.1 Model-driven System Development 40 
5.1.1 Example Approaches 41 
5.1.2 Practical Cases 42 
5.1.3 Lessons Learned and Recommendations 43 
5.2 System Requirements Engineering 43 
5.2.1 Example Approach 44 
5.2.2 Practical Cases 45 
5.2.3 Lessons Learned and Recommendations 48 
5.3 System Verification and Validation 49 
5.3.1 Example Approaches 49 
5.3.2 Practical Cases 50 
5.3.3 Lessons Learned and Recommendations 50 
5.4 Systems Engineering Tool Chain Integration 51 
5.4.1 Example Approaches 51 
5.4.2 Practical Cases 52 
5.4.3 Lessons Learned and Recommendations 55 
5.5 Virtual Engineering of Systems 55 
5.5.1 Example Approaches 56 
5.5.2 Practical Cases 56 
5.5.3 Lessons Learned and Recommendations 57 

Bibliography 59 
 

 



Management Summary 

  Copyright © Fraunhofer IESE 2016 4 

Management Summary 

This booklet discusses the general trend towards Systems Engineering, summarizes ex-
isting studies in the field, and highlights results from an interview series about chal-
lenges and best practices in the area of Systems Engineering across innovative compa-
nies in the German-speaking region. Furthermore, selected best practices are explained 
and cases of companies applying these practices are summarized. The study was per-
formed by Fraunhofer IESE in Germany and was sponsored by the Ministry of Economy, 
Trade and Industry in Japan. 

Part 1 The amount of software in formerly largely hardware-dominated products has continu-
ously increased over time. Software is perceived as an enabler of new, innovative ser-
vices and business models in all sectors of industry and society. Systems Engineering is 
an interdisciplinary approach that considers both the business and the technical needs 
of all customers. Being able to establish appropriate Systems Engineering practices in 
the organization is crucial for staying competitive and for developing innovative prod-
ucts on time, within budget, and with a high level of quality. 

Part 2 Our goal was to collect the state of the practice regarding Systems Engineering in the 
German-speaking region, focusing on challenges and solution approaches in terms of 
best practices (work processes, methods, and tools). The scope of the study was on Sys-
tems Engineering practices across different domains and was not specialized to any 
single domain. Even though we found some already existing surveys and studies related 
to this goal, none fitted our scope completely. 

Part 3 Overall, 42 invitations were sent to people from 34 different organizations. 22 of them 
agreed to be interviewed. Finally, 20 interviews with people from 18 different compa-
nies were performed, including experts from, e.g., Airbus DS Electronics and Border Se-
curity, ETAS GmbH, Hella KGaA Hueck & Co., Robert Bosch GmbH, and ZF TRW Auto-
motive Holdings Corp. The key outcomes are as follows: 

Product Engineering Trends: Companies are mainly driven by the increased complex-
ity of system requirements (aspect stated by 60%) as well as by the ever larger number 
of product variations demanded by their customers (stated by half of the companies). 

Importance of Systems Engineering: On a scale from 1 (not important) to 10 (essen-
tial for survival), the average importance of Systems Engineering is 7.6 and will increase 
to 8.5 within the next five years. 



Management Summary 

Copyright © Fraunhofer IESE 2016 5 

Systems Engineering Challenges: 80% stated that change management within the 
organization is the no. 1 challenge, followed by managing complex requirements and 
interfaces. 

Systems Engineering Process: The larger organizations basically cover every process 
area of ISO/IEC 15288 and 12207, whereas the SMEs have a clear focus on the tech-
nical and implementation processes. 

Systems Engineering Practices: Among the already established practices, the com-
panies largely (close to or more than 50%) picked methods, techniques, and approach-
es related to model-driven development, requirements engineering, test-driven devel-
opment, and verification and validation. 

Specification Languages and Tools: More than 80% of the participants referred to 
UML as the major relevant specification language. Large organizations tend to use 
SysML as a more specific language for system modeling. More than 50% of the Sys-
tems Engineering tools mentioned were related to modeling different aspects of the 
overall system or the software as part of the system. 

Improvement Potential: The greatest improvement potential for Systems Engineering 
lies in increased virtual engineering and better integration of the tool chains used, with 
50% of the participants mentioning each of these areas. 

Systems Engineering Capabilities: The majority of organizations/units rely on inter-
nal and external training programs to improve their capabilities related to Systems En-
gineering. Furthermore, participation in Systems Engineering conferences was men-
tioned. 

Part 4 Based on the key outcomes of the study, a couple of recommendations and areas of 
activity can be derived for organizations striving towards Systems Engineering: 

Organizational Development: Companies should establish a proper change man-
agement strategy for introducing Systems Engineering practices and they need to build 
up appropriate competencies in Systems Engineering in general and Software Engineer-
ing in particular. Especially the larger organizations need to think about managing their 
portfolio of different Systems Engineering projects. 

Technical Development: Companies should develop and integrate a Systems Engi-
neering approach including all stakeholders and establish practices in the areas of Sys-
tem Requirements Engineering, Model-Driven Systems Development, and System Veri-
fication and Validation. More mature companies should prepare to establish practices 
in the areas of Virtual Systems Engineering and Integrated Systems Engineering Tool 
Chains. 



Management Summary 

  Copyright © Fraunhofer IESE 2016 6 

Part 5 For all of the five technical development practice areas mentioned above, there already 
exist established techniques, methods, and tools that cover substantial areas of activity 
and are applied and have been evaluated in practical settings, or there are techniques, 
methods, and tools that are currently under development in national and international 
research and development projects and initiatives. 



Trends towards Systems 
Engineering 

Copyright © Fraunhofer IESE 2016 7 

1 Trends towards Systems Engineering 

1.1 Trend towards System Integration 

The trend across almost all domains points in the direction of complete integration of 
systems into so-called Smart Ecosystems, which offer customer-specific solutions across 
companies driven by a common goal. These Smart Ecosystems break down former insu-
lar solutions for the control of business processes and technical processes and make 
them converge towards an integrated overall solution. 

 

Figure 1:  The trend towards Smart Ecosystems 

To achieve this, a change of paradigms is going to take place: from monolithic single 
systems to open, interconnected, scalable, and service-oriented Software Ecosystems. 
Figure 1 illustrates this trend.  

Information Systems (IS) evolve into Emergent Software Systems, which allow for a flex-
ible combination of information systems across system providers and supported busi-
ness processes. Embedded Systems (ES) evolve into Cyber-Physical Systems (CPS), which 
allow for a digital representation of physical, real-world objects, making use of dedicat-
ed communication infrastructures and the Internet of Things (IoT) to connect systems. 
In both domains, Mobile Apps are also becoming intensely integrated into business 
processes today (Naab, Knodel, Kuhn, & Rost, 2016).  

IS
Information

Systems

ES
Embedded

Systems

MS
Mobile
Systems

Emergent
Software

IS-Driven

Cyber-Physical
Systems
ES-Driven



Trends towards Systems 
Engineering 

  Copyright © Fraunhofer IESE 2016 8 

A Smart Ecosystem flexibly integrates non-trivial Information Systems used to ac-
complish business goals with non-trivial Embedded Systems used to achieve technical 
goals across company boundaries. It functions as one unit to achieve common high-
er-level goals that no single system would be able to achieve on its own. 

The value of data and the potential from using Big Data increases with higher levels of 
system integration. Good examples of this system integration trend can be found eve-
rywhere, such as in the automotive industry (e.g., with Car-2-X communication), in the 
production area (with Industrie 4.0), in the energy industry (with Smart Energy), in 
medical technology (with Smart Health), or in agricultural technology (with Smart Farm-
ing), and in many other areas. Increasing interconnection is a key factor for innovation 
and a major contributor to sustainable success (see Figure 2). 

 

Figure 2:  Smart Ecosystem: A trend across domains 

1.2 Motivation for Systems Engineering 

The basis for the development of such highly integrated systems is a paradigm shift: 
from monolithic single systems to open, interconnected, scalable, and service-oriented 
software ecosystems. To allow this vision to become reality, the development organiza-
tions behind the systems must change as well. The amount of software in formerly 



Trends towards Systems 
Engineering 

Copyright © Fraunhofer IESE 2016 9 

largely hardware-dominated products is continuously increasing. Collaboration across 
organizational boundaries is a key element for successful software development. The 
physical world is becoming digital and smart; the Internets of Services, of Things, and 
of Data are merging with each other. 

Software is increasingly used and perceived as an enabler of new, innovative services 
and business models in all sectors of industry and society. In the future, unique selling 
points and competitive advantages over competitors will increasingly be generated 
from interconnecting proprietary products with other systems. 

According to the International Council on Systems Engineering (INCOSE), Systems 
Engineering is an interdisciplinary approach that considers both the business and the 
technical needs of all customers with the aim of providing a quality product that 
meets the user’s needs. 

Being able to establish appropriate Systems Engineering practices in the organization is 
crucial for staying competitive and for developing innovative products on time, within 
budget, and with a high level of quality. Specifically, it allows an organization to deal 
with the typical characteristics of future systems: 

(1) Complexity: The complexity of future systems will increase. An organization needs 
to have means to cope with this complexity. This requires, for instance, model-based 
engineering approaches instead of textual descriptions, proper systems requirements 
engineering, scalable architectures that allow for enough flexibility, and mature system 
development processes. 

(2) Diversity: Future systems will most likely comprise and integrate diverse systems 
and stakeholders across companies and domains. This requires, for instance, interoper-
able architectures that allow for easy integration, standardization of interfaces, and 
Quality of Service (QoS) guarantees. 

(3) Uncertainty: A system must be able to deal with an uncertain environment: the 
stakeholders and how to interact with them may change over time. This requires, for 
instance, highly adaptable systems, the ability to certify certain qualities (such as system 
performance, functional safety, security, or privacy) at runtime, as well as simulation 
and virtual engineering approaches in order to connect development time and runtime 
more closely. 

(4) Safety and Security: If highly critical embedded systems are integrated with sensi-
tive information systems, the resulting system needs to address functional safety and 
security issues at the same time. Otherwise, a security flaw may become a safety issue. 
This requires, for instance, integrated models addressing security and functional safety 
at the same time. 



Trends towards Systems 
Engineering 

  Copyright © Fraunhofer IESE 2016 10 

(5) User Experience: Despite the rapidly increasing complexity, the systems must stay 
usable. Product success is more and more dependent on the experience a user makes 
while using a product. In order to guarantee this user experience, integrated strategies 
for the user’s interaction with the systems are required, for instance. 

(6) Autonomy: On the basis of smart data usage, future systems will function increas-
ingly autonomously or semi-autonomously. This requires, for instance, a large degree of 
(artificial) intelligence and adaptability of the individual systems. 

(7) Data-Drivenness: The intelligence of future systems will largely depend on con-
necting the right data from different sources, analyzing them appropriately, and build-
ing models. This requires, for instance, the ability to identify and collect data with an 
appropriate level of quality on the one hand, and the introduction of powerful data 
protection mechanisms for guaranteeing an individual’s privacy on the other hand. 

1.3 Background Information 

The following section provides some background explanations about related concepts 
underlying the trend towards Systems Engineering. 

1.3.1 Industrie 4.0 

With the advent of industrialization, technology has progressed by leaps and bounds, 
leading to four industrial revolutions: the first revolution was in the field of mechaniza-
tion, the second revolution refers to the intensive use of electric energy, and the wide-
spread digitalization marks the third revolution, where every physical “thing” is getting 
a digital representation. Advanced digitalization, i.e., the combination of the Internet 
and futuristic technologies in the field of “smart” objects (machines and products) will 
initiate another paradigm shift, resulting in the fourth industrial revolution a.k.a. Indus-
trie 4.0 (Federal Ministry for Economic Affairs and Energy, 2016), in industrial produc-
tion.  

The Industrie 4.0 strategic initiative was proposed by the German government in the 
context of the High-Tech Strategy 2020 plan. A variety of terms are used outside Ger-
man-speaking countries to describe the concept of Industrie 4.0. For example, in the 
English-speaking world and at EU level, the Internet of Things (IoT) and the trend to-
wards digitalization referred to the third Industrial Revolution. The terms “Smart Pro-
duction”, “Smart Manufacturing”, or “Smart Factory” are used in Europe, China, and 
the US to refer to the digital networking of production to create smart manufacturing 
systems (Kagermann, Helbig, Hellinger, & Wahlster, 2013). 

The Reference Architecture Model for Industrie 4.0 (RAMI 4.0) (Hankel, M.; Bosch 
Rexroth, 2015) is a unified architecture model that serves the purpose of a common 



Trends towards Systems 
Engineering 

Copyright © Fraunhofer IESE 2016 11 

understanding regarding the standards, use cases, etc. that are necessary for Industrie 
4.0 and allows discussing associations and details. In RAMI 4.0, Industrie 4.0 compo-
nents are defined regarding their structure and function. This enables cross-company 
networking and integration across value-added networks.  

This massive integration of data results in technical systems of systems whose capabili-
ties include self-organization, re-organization, and self-optimization. These individual-
ized products constitute a transition from static solutions designed during development 
time to dynamic solutions that adapt and optimize autonomously during runtime. 

1.3.2 Cyber-Physical Systems (CPS) 

Cyber-Physical Systems (CPS) are systems evolving from connecting embedded systems 
with each other and with web-based services (acatech - National Academy of Science 
and Engineering, 2016). That is, they stand for the connection of the physical and the 
IT world and result from complex interaction and integration between embedded sys-
tems, application systems, and infrastructures, while taking into account Human-
Computer Interaction in application processes. They are the technological basis of In-
dustrie 4.0 (Jazdi, 2014). 

1.3.3 Internet of Things (IoT) 

In a nutshell, “IoT is a novel paradigm relying on the interaction of smart objects 
(things) with each other and with physical and/or virtual resources through the Inter-
net” (Cavalcante, et al., 2016). The scope of an IoT system varies from a small system 
with uniquely identifiable “Things” to a system with millions of interconnected 
“Things” with a physical or virtual representation (e.g., identity, status, location) in the 
digital world. These “Things” are interconnected using standard protocols, possess 
sensing/actuation and potential programmability capabilities, and deliver complex ser-
vices. Taking security into account, the services provided by these “Things” can be 
made available anytime, anywhere (Minerva, Biru, & Rotondi, 2015).  

1.3.4 Cloud Computing 

The U.S. National Institute of Standards and Technology (NIST) provides a definition for 
cloud computing that starts with: “Cloud computing is a model for enabling ubiqui-
tous, convenient, on-demand network access to a shared pool of configurable compu-
ting resources (e.g., networks, servers, storage, applications, and services) that can be 
rapidly provisioned and released with minimal management effort or service provider 
interaction”. The introduced cloud model is composed of five essential properties, three 
service models, and four deployment models (Mell & Grance, 211). 



Trends towards Systems 
Engineering 

  Copyright © Fraunhofer IESE 2016 12 

1.3.5 Internet of Services 

IoT and cloud computing converge to provide a set of services called Internet of Ser-
vices, which represent manufacturing processes. This set of services is published and 
deployed using cloud-based technologies. Cloud-based manufacturing, for example, is 
then used to compose services and provide solutions to virtual enterprises (Pisching, 
Junqueira, dos Santos Filho, & Miyagi, 2015). Customers can request services via a web 
portal connected to the cloud. After verifying the availability of these services, the 
background system will then provide these services to the customer to satisfy their 
needs. 

1.3.6 Industrial Internet 

Industrial Internet is considered as a sub-paradigm of IoT that focuses more on safety-
critical industrial applications (Bruner, 2013). It refers to the integration of complex 
physical machines with sensors and software in a common network. Technologies that 
form the basis of the Industrial Internet include “pervasive networks, open source mi-
crocontrollers, software that is capable of analyzing massive amount [sic] of data, that 
understands human preferences and then optimize [sic] across many variables, and the 
computing power needed to run this intelligence available anywhere at little cost” 
(Wang, et al., 2015). 

1.3.7 Big Data 

“With an aggressive push towards “Internet of Things”, data has become more acces-
sible and ubiquitous, contributing to the big data environment. This phenomenon ne-
cessitates the right approach and tools to convert data into useful, actionable infor-
mation” (Lee, Lapira, Bagheri, & Kao, 2013). By 2020, it is estimated the digital uni-
verse will reach 44 trillion gigabytes of data. The recent trends towards increased digiti-
zation and system integration increase the amount of available data called “Big Data” 
(as depicted in Figure 1), making it a major enabler for new business models and inno-
vation.  

Big Data can be characterized according to three dimensions: the volume of data, the 
required velocity of providing and processing data, and the increasing variety of data. 
The usage of Big Data supports companies, for instance in making better strategic deci-
sions, controlling processes, understanding customers better, and reducing costs. But it 
can also be seen as an enabler for the development of new business models (Heidrich, 
Trendowicz, & Ebert, 2016). 



Related Studies on 
Systems Engineering 

Copyright © Fraunhofer IESE 2016 13 

2 Related Studies on Systems Engineering 

The analysis of current international studies and publications on usage and best prac-
tices of Systems Engineering processes and methods resulted in three surveys and two 
studies, as described briefly in the following. 

2.1 Model-Based Systems Engineering (MBSE) Methodologies 

This survey created in 2007 by Jet Propulsion Laboratory and the California Institute of 
Technology provides a cursory description of some of the leading Model-Based Systems 
Engineering (MBSE) methodologies used in industry (Estefan, 2007). The intent of the 
survey was to educate the reader, principally members of the INCOSE MBSE Focus 
Group, about the various candidate MBSE methodologies that are commercially availa-
ble and the tools that support the method. The following MBSE methodologies were 
investigated: 

Telelogic Harmony-SE: Harmony-SE: A subset of the larger integrated systems and 
software development process known as Harmony®. Harmony-SE uses a “service re-
quest-driven” modeling approach along with Object Management Group™ Systems 
Modeling Language™ (OMG SysML™) artifacts.1 

INCOSE Object-Oriented Systems Engineering Method (OOSEM): OOSEM integrates a 
top-down, model-based approach that uses OMG SysML™ to support the specifica-
tion, analysis, design, and verification of systems. 

IBM Rational Unified Process for Systems Engineering (RU®P SE) for Model-Driven Sys-
tems Development (MDSD): RUP® SE is a derivative of the Rational Unified Process® 
(RUP®). RUP® is a methodology that is both a process framework and process product 
and has been used extensively in government and industry. RUP® SE specifically ad-
dresses the needs of systems engineering projects. The objective of its creation was to 
apply the discipline and best practices of the RUP® for software development to the 
challenges of system specification, analysis, design, and development. 

Vitech Model-Based System Engineering (MBSE) Methodology: The Vitech MBSE meth-
odology is based on four primary concurrent SE activities that are linked and main-

                                                
1  Remark: At the time of this survey in 2007, Telelogic was an independent company. Meanwhile, Rational 

has acquired Telelogic and the Harmony Development Process is being further developed as IBM Rational 
Harmony for Systems Engineering (IBM). 



Related Studies on 
Systems Engineering 

  Copyright © Fraunhofer IESE 2016 14 

tained through a common System Design Repository. Each of these primary SE activities 
is linked within the context of associated “domains”, where the SE activities are con-
sidered elements of a particular kind of domain known as the Process Domain. An 
MBSE System Definition Language (SDL) is used to manage model artifacts. 

State Analysis (SA): State Analysis (SA) is an MBSE methodology that leverages a model- 
and state-based control architecture, where state is defined to be “a representation of 
the momentary condition of an evolving system,” and models describe how a state 
evolves. SA provides a process for capturing system and software requirements in the 
form of explicit models, thereby helping to reduce the gap between the requirements 
on software specified by systems engineers and the implementation of these require-
ments by software engineers. 

2.2 Improving the Integration of Program Management and Systems Engineering 

In this survey, 3,000 INCOSE members (systems engineers) and 5,000 PMI members 
(program managers) were asked in 2012 about their understanding of how Program 
Management and Systems Engineering are integrated within their organization and to 
describe the interactions between the use of standards, integration, formalization, level 
of effectiveness, and degree of unproductive tension between Program Management 
and Systems Engineering (Conforto, Rossi, Rebentisch, Oehmen, & Pacenza, 2013). 

680 Chief Systems Engineers and Program Managers provided answers. Their organiza-
tion types were mainly commercial entities (78%), primarily in the US (58%), but also in 
India, UK, Germany, China, and S. Africa. The industry focus was mainly on profession-
al/scientific (36%), manufacturing (13%), public administration (12%), transportation 
(6%), and healthcare (4%). 

About 30% of the respondents indicated some or significant unproductive tension be-
tween Systems Engineering and Program Management. About 20% indicated no un-
productive tension. Smaller organizations (below $500 million annual revenue) and 
large organizations (above $5 billion) are particularly at risk of suffering from unproduc-
tive tension. Lack of integrated planning was the key source of unproductive tension. 
Fully integrated organizations show almost no or only minimal unproductive tension.  

The key levers for reducing unproductive tension were: improving the integration of 
Systems Engineering and Program Management by using standards from both do-
mains, formalizing the definition of integration, developing integrated engineering 
program assessments, and effectively sharing responsibility for risk management, quali-
ty, lifecycle planning, and external suppliers. 



Related Studies on 
Systems Engineering 

Copyright © Fraunhofer IESE 2016 15 

2.3 Systems Engineering in Industrial Practice 

The objective of this study conducted by Fraunhofer IPT, Heinz Nixdorf Institute, Unity 
Consulting & Innovation in 2013 was to gain a clear representation of the capability of 
systems engineering and to obtain the current level of use of SE in practice and in activ-
ities in training and further education (Gausemeier, et al., 2015). The current barriers 
preventing full exploitation of potential benefits are highlighted and recommendations 
for overcoming them are given. The study is based on 33 interviews with experts from 
industrial companies and service providers from Germany, Austria, and Switzerland 
(DACH region). The study participants hold various positions within their companies; 
primarily CEOs, development managers, production managers, and systems engineers 
were interviewed. The main results are described below. 

The term systems engineering is familiar in practice; most companies have a basic un-
derstanding. However, only real experts have a deep understanding. Often, when sys-
tems engineering is discussed, the focus is only on software development and is too 
narrow.  

In principle, all participants see considerable potential in the application of systems en-
gineering. Particularly in small and medium-sized companies, the topic of systems engi-
neering has been very person-specific. However, these people, in particular, are mostly 
keen to transfer the ideas and approaches of systems engineering to their everyday 
work. Similarly, company-wide awareness of systems engineering is also not yet evident 
in large companies. 

Across all sectors and company sizes, all topics were deemed important, regardless of 
the systems engineering expertise of the persons interviewed. On average, companies 
with less systems engineering expertise rated themselves better than companies with 
more expertise. The following aspects must be overcome here: lack of know-how, lack 
of a methodical approach, as well as insufficient tool support. 

The study proves that, from the industry’s perspective, systems engineering is a neces-
sary prerequisite for developing complex technical systems. This concerns not only fu-
ture systems, which will become increasingly smart and networked, but also current 
products and product systems to be developed. The multi-disciplinarity of the system, 
which can no longer be mastered using solely a discipline-specific approach, is an im-
portant complexity driver. 

In the German-speaking region, the application of systems engineering depends largely 
on the sector. It has been firmly established in the aerospace industry, as expected, for 
a long time and is considered indispensable in this area. By now, systems engineering is 
also regarded as an important “enabler” in the automotive manufacturing industry. 
German OEMs, in particular, have recognized the potential it offers them to retain their 
position as system integrators. On the other hand, in the industrial field, and particular-



Related Studies on 
Systems Engineering 

  Copyright © Fraunhofer IESE 2016 16 

ly in mechanical and plant engineering, which are largely dominated by small and me-
dium-sized enterprises, systems engineering is largely unknown. 

2.4 Systems Engineering Effectiveness 

In 2012, the National Defense Industrial Association Systems Engineering Division 
(NDIA-SED) collaborated with the Institute of Electrical and Electronic Engineers Aero-
space and Electronic Systems Society (IEEE-AESS) and the Software Engineering Institute 
(SEI) of Carnegie Mellon® to obtain quantitative evidence of the benefit of systems en-
gineering (SE) best practices on project performance (Elm & Goldenson, 2012). The ob-
jective of the survey was to identify SE best practices used in projects, collect perfor-
mance data on these projects, and identify relationships between the application of 
these SE best practices and project performance. 

The survey population consisted of projects and programs executed by system develop-
ers reached through the NDIA-SED, IEEE-AESS, and INCOSE. About 148 participants 
completed the survey. The majority of the responses came from U.S. defense industry 
organizations that were executing contracts within the U.S. for the U.S. Department of 
Defense (DoD). 

Overall, the study found clear and significant relationships between the application of 
SE best practices to projects and the performance of those projects as shown in Figure 
3. 



Related Studies on 
Systems Engineering 

Copyright © Fraunhofer IESE 2016 17 

 

Figure 3:  Relationship between Systems Engineering and Performance (Source: Carnegie Mellon University, Software 
Engineering Institute) 

The results of the survey identified those SE process groups that have the strongest re-
lationships to project performance. It also shows that more challenging projects tend to 
perform worse than less challenging projects. However, projects that face less chal-
lenge still tend to benefit from implementing systems engineering best practices. 
Moreover, the impact of employing systems engineering best practices is even greater 
for more challenging projects. 

2.5 Model-Driven Development 

This study was performed in 2013 by Fraunhofer IESE for a large industrial company in 
Germany in the automotive area that wishes to remain anonymous. The objective of 
the study was to investigate how to use model-driven development approaches in the 
practical development of software and systems. Of high interest were the tools used 
and the integration of tools into a tool chain for implementing a development process. 
36 persons working in software development departments in production and research 
of industrial companies in the automotive domain took part in this study. 

Most participants were modeling functional behavior (with Simulink and ASCET) and 
software structure (with UML/SysML and Simulink/ASCET). Modeling was mainly used 
for the system architecture and for interfaces. Requirements were usually not modeled 
very often. 

52%

29%
20%

33%

47%

24%

15%
24%

57%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Lower SEC (n=48) Middle SEC (n=49) Higher SEC (n=51)

Pr
oj

ec
t P

er
fo

rm
an

ce

Total System Engineering Capability (SEC)

Lower Performance Middle Performance Higher Performance



Related Studies on 
Systems Engineering 

  Copyright © Fraunhofer IESE 2016 18 

Regarding the usage of models, the study provided the following results: For require-
ments elicitation, partly Simulink and Visio were being used for structure models 
(SysML, UML). For functional modeling, Simulink, ASCET, Modelica were being used for 
executable models, and SysML, UML for structure models. For architectures, Visio was 
being used for structure models (SysML, UML). For design, UML, Simulink was being 
used. For testing, Simulink and other tools were being used. 

Regarding the creation of models, the study provided the following results: The time 
investigated in modeling is well invested. Models are often used to validate decisions. 
Models help to understand algorithms. Models help to detect faults earlier. Automatic 
generation of code is not always helpful (code quality is often not good enough). 

Regarding the quality of the models, many participants stated that SysML/UML models 
do have faults, inconsistencies, or are not up to date. They also noted that the quality 
of Simulink models is usually higher than that of SysML/UML models. 



Systems Engineering 
Study Results 

Copyright © Fraunhofer IESE 2016 19 

3 Systems Engineering Study Results 

The goal of the study was on collecting the state of the practice regarding Systems En-
gineering in the German-speaking area, focusing on challenges and solution approach-
es in terms of best practices (work processes, methods, and tools). The scope of the 
study was on Systems Engineering practices across different domains and was not spe-
cialized on a single domain. Overall, 42 invitations were sent to people from 34 differ-
ent organizations. 22 of them agreed to be interviewed. Finally, 20 interviews with 
people from 18 different companies were performed. 6 organizations/units were classi-
fied as a Small or Medium-sized Enterprise (SME) and 14 as a Large Organization (LO). 
The following companies agreed to be mentioned as a study participant: 

Company Domains Type 

Airbus DS Electronics and 
Border Security 

Aerospace, electronics LO 

Art of Technology AG Production, healthcare, aerospace SME 

AVL LIST GmbH Automotive LO 

Binder Elektronik GmbH Industry electronics, healthcare SME 

camLine GmbH Software supplier for production, healthcare, 
automotive, aerospace, and semiconductors 

SME 

CIBEK technology + trad-
ing GmbH 

Solutions for senior citizens, automation 
technology 

SME 

ETAS GmbH Automotive LO 

Hella KGaA Hueck & Co. Automotive, Electronics, Lighting LO 

Robert Bosch GmbH Production, automotive, consumer electronics LO 

ZF TRW Automotive Hold-
ings Corp. 

Automotive LO 

Table 1:  List of study participants 

The average duration of an interview was about 60 minutes. A single interview con-
tained 29 questions (12 heading questions with sub-questions). The questions were 
grouped into four different interview parts dealing with the context of the participant 
and her/his organization/unit, the challenges related to Systems Engineering they con-
fronted, solution approaches and practices for addressing the challenges, and an out-
look to the future improvement potential of Systems Engineering and the organization-
al capabilities in general. 



Systems Engineering 
Study Results 

  Copyright © Fraunhofer IESE 2016 20 

3.1 Context 

Domains: The distribution of domains of the organizations/units can be seen in Figure 
4. The majority are from the automotive and production domain, followed by aero-
space, transportation, and healthcare. A few companies are from the electronics and 
mechanical engineering domain. 

 

Figure 4:  Distribution of participants across domains 

24%

11%

16%

30%

3%

5%

11%

Production Healthcare

Aerospace Automotive

Transportation Mechanical Engineering

Electronics



Systems Engineering 
Study Results 

Copyright © Fraunhofer IESE 2016 21 

 

Figure 5:  Recent trends 

Current trends in product engineering: The companies are currently confronted by 
many trends in product engineering. Some of them are common, such as increasing 
requirements complexity (60% of the answers), shorter time to market/shorter R&D 
phases (55%), and increasing product variation due to customer expectations for indi-
vidualized products (50% of the respondents). 45% of the respondents mentioned in-
creasing cost pressure and global product engineering as recent trends. A list of the 
most popular trends is presented in Figure 5. 

Future trends in product engineering: Many respondents assume that the current 
trends will remain relevant over the next five years, but according to the respondents, 
the leading trends in the future will be the growing multi-disciplinary development, in-
creasing cost pressure, and shorter time to market (each of them was mentioned in 
20% of the cases) as can be seen in Figure 6. 

0% 10% 20% 30% 40% 50% 60% 70%

Requirements become more complex

Shorter time to market (shorter R&D
phases)

Increasing product variation

Global product engineering

Increasing cost pressure

Higher integration and higher interface
diversity

Shorter product life cycles

Increasing innovational demands



Systems Engineering 
Study Results 

  Copyright © Fraunhofer IESE 2016 22 

 

Figure 6:  Trends in 5 years 

3.2 Challenges 

This part talks about practical challenges (e.g., with regard to products, system devel-
opment processes, organizational structures, required competences) related to Systems 
Engineering the organization needs to face today and in 5 years from now on. 

Importance of Systems Engineering today: On a scale from 1 (not important) to 10 
(essential for survival) all organizations state that their implemented Systems Engineer-
ing process (including project processes, technical processes, agreement processes, and 
organizational processes) is important, very important, or essential (cf. Figure 7). The 
lowest importance value given by the participating organizations is 5 (moderate im-
portance), the highest value is 10 (essential for survival). The average importance is 7.6, 
meaning important. 

0% 5% 10% 15% 20% 25%

Growing multi-disciplinary
development

Increasing cost pressure

Shorter time to market (shorter
R&D phases)

Increasing product variation

Requirements become more
complex

Higher integration and higher
interface diversity

Higher complexity

Global product engineering



Systems Engineering 
Study Results 

Copyright © Fraunhofer IESE 2016 23 

For about 25% of the participating organizations, this process is really essential (im-
portance value 9 or 10). About 35% of all participating organizations stated that Sys-
tems Engineering is only of moderate importance (importance value 5 or 6). All other 
participating organizations gave values in between. The standard deviation is 1.5, 
meaning that the answers given are within a narrow margin. 

There is no organization where Systems Engineering does not play any role or just a 
minor role. No significant difference between large organizations and SMEs can be dis-
covered. 

 

Figure 7:  The importance of Systems Engineering today 

Importance of Systems Engineering in 5 years: Nearly all organizations estimate 
that Systems Engineering will become more important in the future. The average im-
portance is increasing significantly from 7.6 to 8.7 within the next 5 years (cf. the up-
wards shift of the importance values from Figure 10 to Figure 11). This increase is seen 
in general across all types and sizes of organizations and also across all application do-
mains. Nevertheless, it can be seen in Figure 11 that large organizations generally esti-
mate a higher importance value in 5 years compared to SMEs. This can be interpreted 

0%

10%

20%

30%

40%

50%

1 2 3 4 5 6 7 8 9 10

Overall SME LO



Systems Engineering 
Study Results 

  Copyright © Fraunhofer IESE 2016 24 

such that Systems Engineering will play a more important role in large organizations in 
the future than in SMEs. 

The standard deviation decreases from 1.5 to 1.1, which means that the estimated im-
portance in 5 years is even more focused around the average importance of 8.7 (more 
organizations estimate the same higher importance). 

 

 

Figure 11:  The importance of Systems Engineering in 5 years 

0%

10%

20%

30%

40%

50%

1 2 3 4 5 6 7 8 9 10

Overall SME LO



Systems Engineering 
Study Results 

Copyright © Fraunhofer IESE 2016 25 

 

Figure 8:  Current Systems Engineering challenges 

Current Challenges in Systems Engineering: Change management within the or-
ganization is the top challenge that nearly all organizations are currently confronted 
with, followed by requirements and interface management (cf. Figure 8). Other im-
portant challenges are modeling and simulation, data and information management, 
ensuring product quality, establishing/keeping methodological skills within specialist 
disciplines and across disciplines, establishing coherent tool chains, and human re-
sources management. 

0% 20% 40% 60% 80% 100%

Other

Growing multidisciplinary development

Integration of methods and processes

Human Resources Management

Establishing coherent tool chains

Methodological skills

Ensuring product quality

Data and information management

Modelling and simulation

Requirements and interface
management

Change management within the
organization

Overall SME LO



Systems Engineering 
Study Results 

  Copyright © Fraunhofer IESE 2016 26 

SMEs are mainly confronted with change management within the organization, meth-
odological skills within specialist disciplines and across disciplines, establishing coherent 
tool chains within the organization and across organizational boundaries, and ensuring 
product quality (e.g., reliability, safety, security). 

Large organizations are mainly confronted with requirements and interface manage-
ment of complex systems or even systems of systems, modeling and simulation, change 
management within the organization creating acceptance of new approaches and 
technologies, establishing coherent tool chains within the organization and across or-
ganizational boundaries, and ensuring product quality (e.g., reliability, safety, security). 

Additionally, nearly every organization is fighting other individual challenges depending 
on its current product roadmap, process organization, infrastructure, or tool chain. In 
Figure 8, these individual challenges are summarized in the category “Other”. 

Future Challenges in Systems Engineering: For most organizations, challenges re-
lated to Systems Engineering within the next five years are largely the same challenges 
they are confronted with today. Additional future Systems Engineering challenges are 
highly diversified, depending on the application domain and the individual system de-
velopment processes of each organization.  

On the technical process level, these challenges range from model-based development 
via agile development or rapid prototyping to verification and validation with virtual 
prototyping and simulations. Better requirements and interface management for up-
coming systems of systems was also mentioned. 

On the project process level, new challenges such as introducing more product variants 
or keeping up the product quality (especially w.r.t. security and safety) are becoming 
more important. Here, SMEs have a special interest in data and information manage-
ment and in introducing change management in the organization. 

On the organizational process level, new challenges such as improved change man-
agement aimed at handling the transformation process of digitalization in the company 
or close leadership to really perform the Systems Engineering processes seem to be im-
portant. Some organizations plan to place more emphasis on human resources man-
agement in order to build up and preserve Systems Engineering know-how. 

No specific trend can be discovered here across the type or size of organization. Never-
theless, specific trends towards new functionality exist in individual application do-
mains; e.g. in the automotive domain, autonomous driving creates new challenges for 
requirements and interface management for networked systems, modeling and simula-
tions of products/solutions, and safety requirements. 



Systems Engineering 
Study Results 

Copyright © Fraunhofer IESE 2016 27 

3.3 Solution Approaches 

After discussing the major challenges related to System Engineering this part discusses 
the most promising solution approaches taken by industry. This comprises the use of 
best practices, standards, methods, tools, etc. 

System Engineering Process: The larger organizations basically cover every process 
area of ISO/IEC 15288 and 12207, whereas the SMEs have a clear focus on the tech-
nical and implementation processes. The standards they adhere to are quite domain-
specific, except for quite general approaches such as ISO 9001. 40% of the larger or-
ganizations explicitly referred to ISO/IEC 15288. 

Regarding the process model used, more than 45% of the large organizations and 
SMEs claim that they are following an agile model, whereas more than 50% of the 
large organizations follow a waterfall model or iterative waterfall model. Furthermore, 
more than 80% of the large organizations provide different variants of their standard 
process. 

The majority of the SMEs (83%) have defined a common development process with lit-
tle variants. In 86% of the larger organizations, several variants of the development 
process exist. However, in general a standard development process is defined that is 
tailored according to project needs. 

Stakeholder Involvement: In large organizations, the different stakeholders and dis-
ciplines are interlinked and coordinated by following a defined process (85%). Personal 
communication is the preferred way of smaller companies to organize their product de-
velopment (20%).  

Workshops and the creation of mixed teams to get a common project understanding 
are established in all organizations (SMEs: 80%, LOs: 57% resp. 50%). The use of tools 
and common data pools across organizational boundaries is an issue for all organiza-
tions (SMEs: 20%, LOs: 50%).     

The integration of external suppliers into development activities is mostly performed by 
supplier agreements (SMEs: 40%, LOs: 93%). A closer relationship is established by 
larger organizations through subcontractor management (43%). In addition, body leas-
ing concepts are applied by LOs on a large scale (64%) to provide external knowledge 
for development activities. Training activities including workshops together with exter-
nal suppliers are the means by which smaller organizations get a common understand-
ing in development activities (40%).    



Systems Engineering 
Study Results 

  Copyright © Fraunhofer IESE 2016 28 

 

Figure 9:  External supplier integration 

0%

20%

40%

60%

80%

100%

Overall SME LO



Systems Engineering 
Study Results 

Copyright © Fraunhofer IESE 2016 29 

 

Figure 10:  Top Established Systems Engineering Practices 

Top 3 Established Practices: As can be seen from Figure 10, from the already estab-
lished practices, the companies largely (close to or more than 50%) picked methods, 
techniques, and approaches related to model-driven development, requirements engi-
neering, test-driven development, and verification and validation. Further practices 
mentioned by at least more than one organization include integrated tool chains and 
virtual engineering, and an overall system architecture. 

Moreover, the selection of the top practices varies between large organizations and 
SMEs. The variance is especially large for model-driven development and for system ver-
ification and validation, which were chosen by more than 60% and 80% of the large 
organizations, respectively, but only by less than 40% and about 50% of SMEs, respec-
tively. More than 80% of the SMEs picked test-driven development as a top established 
practice. This was only picked by about 30% of the large organizations. Please note 
that this does not mean that large organizations do not do test-driven development; it 
only means that this was not picked as one of the top three practices. 

Regarding the most strongly impacted process areas, the participants agreed with a 
huge majority that the technical and software implementation process areas (as defined 
by ISO/IEC 15288 and 12207) are impacted by the practices. 

0%

20%

40%

60%

80%

100%

Overall SME LO



Systems Engineering 
Study Results 

  Copyright © Fraunhofer IESE 2016 30 

Languages for System Modeling: As can be seen in Figure 11, the majority referred 
to UML as the major relevant modeling language. Large organizations tend to use 
SysML (based on UML) as a more specific language for system modeling. Furthermore, 
some domain-specific languages were mentioned. Singular answers included DFD (Data 
Flow Diagrams), FMI (Functional Mock-up Interfaces), OSLC (Open Services for Lifecycle 
Collaboration), Structured Analysis, XML/XMI, IDef0, and Autosar. 

 

Figure 11:  Used Specification Languages 

Systems Engineering Tools: Overall, more than 90 statements about tool usages re-
lated to Systems Engineering were made by the study participants (80% of them stem 
from large organizations) and over 40 different tools or components of tools were 
among these statements.  

The vast majority of tools mentioned is related to modeling different aspects of the 
overall system or the software as part of the system. Depending on the domain, some 
tools were quite domain-specific (such as appropriate CAD software). Furthermore, 
mostly requirements-specific simulation tools and testing tools were mentioned to sup-
port the previously listed practices. 

Regarding modeling tools, about 50% of the participants stated that they are using 
“Enterprise Architect” and “MATLAB”. Regarding requirements tools, 30% use 
“DOORS” and “Microsoft Office”. Regarding simulation tools, 40% use MATLAB’s 
“Simulink” extension. Regarding testing tools, a variety of different tools were men-
tioned. 

0%

20%

40%

60%

80%

100%

UML SysML DSL Other

Overall SME LO



Systems Engineering 
Study Results 

Copyright © Fraunhofer IESE 2016 31 

Close to 90% of the tools or components mentioned were specific for a certain type of 
activity, whereas a bit more than 10% were multi-purpose tools or integrated tool 
suites. Furthermore, close to 10% of the answers mentioned self-developed tools. 
Mostly this was used in the area of simulation (about 5%). 

Emerging Technologies and Needs: The most prominent emerging technologies, 
with close to 40%, were the adoption of more formal methods and model-based sys-
tem development approaches instead of informal/textual specifications. Furthermore, 
the general need for better integration of tool chains, virtual engineering incl. simula-
tion, and the development of their own specialized tools were mentioned as technolog-
ical areas for the near future. Moreover, some general more product-/feature-related 
trends were mentioned that have an impact on the choice of technologies, such as Big 
Data, Internet of Things, and service orientation. 

3.4 Outlook and Capabilities 

Improvement potential: As can be seen in Figure 12, the greatest improvement po-
tentials for Systems Engineering, with more than 50% each, are in increased virtual en-
gineering and better integration of the tool chains used. The demand seems to be big-
ger for SMEs. 

For nearly 40% of the larger organizations, improved program management (aka. pro-
ject portfolio management) is also worth mentioning. This is no surprise as larger or-
ganizations need to deal with a larger number of projects running simultaneously. For 
close to 40% of the SMEs, a higher degree of automation was seen as an important 
improvement potential. 

Improving System Engineering Capabilities: Regarding ways to improve an organi-
zation’s own capabilities in Systems Engineering, a variety of answers were given. 
However, as can be seen in Figure 13, the vast majority relies on making use of internal 
and external training programs. Not surprisingly, nearly all of the organizations offer 
such training programs internally. Furthermore, participation in Systems Engineering 
conferences for the purpose of exchanging knowledge and experience among peers 
and with researchers and discussions about trends and solution approaches was men-
tioned by more than 50% of the overall participants and by more than 60% of those 
from larger organizations. 



Systems Engineering 
Study Results 

  Copyright © Fraunhofer IESE 2016 32 

 

Figure 12:  Areas of Improvement Potential for Systems Engineering 

0%

20%

40%

60%

80%

100%

Overall SME LO



Systems Engineering 
Study Results 

Copyright © Fraunhofer IESE 2016 33 

 

Figure 13:  Approaches for Improving System Engineering Capabilities 

3.5 Discussion of Potential Threats and Limitations 

This part discusses a summary of the major potential threats and limitations of the per-
formed study related to the methodology applied and their performers: 

(1) Sample size: The overall number of interviews performed is fairly small. This limits 
the generalizability of the results on the one hand, but also our possibilities of analyzing 
relationships among the answers on the other hand. However, because of the relatively 
small amount of interviews, it was possible to focus more on the single answers provid-
ed and to get deeper insights into single cases. 

(2) Self-reported data: The participants of the study were asked to report about their 
specific knowledge and about experience limited to their specific context in the organi-
zation/unit. They were asked to explicitly answer based on their first-hand experiences 
and not to make assumptions about what is going on outside their responsibilities and 
fields of expertise. However, the answers given are still biased by their personal percep-

0%

20%

40%

60%

80%

100%

Overall SME LO



Systems Engineering 
Study Results 

  Copyright © Fraunhofer IESE 2016 34 

tion. As only one person of an organization or of a specific unit of a (larger) organiza-
tion was interviewed, there was no chance to analyze discrepancies among answers; 
the researcher had to trust what was said about the organization/unit. 

(3) Questionnaire: The questionnaire used to guide the interviews was systematically 
derived from the goals of the study and peer-reviewed internally by Fraunhofer IESE re-
searchers. During the first two interviews, it was experienced that some questions were 
hard to answer without some further hints about the intention of the question. Fur-
thermore, the interviews took longer than initially planned (60 minutes at most). For 
that reason, example answers (mostly containing potential alternatives) for 13 out of 
the 29 questions were provided. The example answers were created based on the re-
lated studies previously analyzed and on the experience of the Fraunhofer IESE re-
searchers from past Systems Engineering projects. However, it was made clear that the 
interviewee should not just select from the provided examples, but should also be en-
couraged to think beyond them. The consequence was that coding of the provided an-
swers was simplified as many answers could be mapped to the existing list. This con-
tributed to facilitate comparability of the answers. Furthermore, the time for conduct-
ing an interview could be significantly reduced. 

(4) Trust and openness: The Fraunhofer-Gesellschaft is well known in Germany as an 
objective, neutral, and independent partner. This guarantees a certain openness to-
wards participating in a study as well as openly talking about challenges and solution 
approaches (at least if it is not conflicting with the core intellectual property of the 
company). Furthermore, it was made clear in the invitation to the interview for what 
purpose the results would be used, that the minutes would be anonymized before be-
ing analyzed, and that the interviewees would have the chance to review the minutes 
and would have to explicitly approve the use of the minutes as part of the analysis. 

(5) Language: All interviews were performed in German and then translated into Eng-
lish for further analysis. After translation the interviews were sent to the participants for 
approval. This gave the interviewees the chance to check the accuracy of the transla-
tion to their best knowledge and was done to confirm that the interview minutes re-
flect the opinion of the interviewees properly. Furthermore, the interviewees had the 
chance to make extensions and corrections to the given answers. 



Study Key Outcomes 
and Recommendations 

Copyright © Fraunhofer IESE 2016 35 

4 Study Key Outcomes and Recommendations 

4.1 Key Outcomes 

The following key outcomes can be extracted from the 20 interviews based on our 
analysis: 

(1) Product Engineering Trends: Companies are mainly driven by the increased com-
plexity of system requirements (aspect stated by 60%) as well as by the ever larger 
number of product variations demanded by their customers (stated by half of the com-
panies). In combination with shorter time to market (about 55%), this puts a lot of 
pressure on current system engineering. In the future, more cross-disciplined develop-
ment is seen (by 20%) as an additional driving factor, which will in turn increase the 
complexity of projects. The trend to increasing cost pressure and shorter time to market 
is expected to remain. 

(2) Importance of Software: More than 85% of the companies stated that software 
plays a major role in their products; even though about 70% of the participants stated 
that they come from a pure hardware development world. Furthermore, 85% stated 
that they spent 30% or more (up to 90%) of the development budget on software de-
velopment. More than half of the participants agreed that this will further increase 
within the next five years. 

(3) Importance of Systems Engineering: On a scale from 1 (not important) to 10 
(essential for survival), the average importance of Systems Engineering is 7.6. Though 
Systems Engineering is currently already very important, this will increase to 8.7 within 
the next five years. Most participants stated that the reason for the increasing im-
portance are customer demand for higher product quality in combination with in-
creased complexity of the products. This especially refers to requirements related to sys-
tem platforms and system integration. 

(4) Systems Engineering Challenges: 80% stated that change management within 
the organization is the no. 1 challenge, followed by managing complex requirements 
and interfaces (especially for systems of systems). Additional future Systems Engineer-
ing challenges are human resources management, the transformation and organization 
processes regarding Systems Engineering within the organization and data- and infor-
mation management. 

(5) Systems Engineering Process: The larger organizations basically cover every pro-
cess area of ISO/IEC 15288 and 12207, whereas the SMEs have a clear focus on the 



Study Key Outcomes 
and Recommendations 

  Copyright © Fraunhofer IESE 2016 36 

technical and implementation processes. The standards they adhere to are quite do-
main-specific, except for quite general approaches such as ISO 9001. 40% of the larger 
organizations explicitly referred to ISO/IEC 15288. Regarding the process models used, 
more than 45% of the large organizations and SMEs claim that they are following an 
agile model, whereas more than 50% of the large organizations follow a waterfall 
model or iterative waterfall model. Furthermore, more than 80% of the large organiza-
tions provide different variants of their standard process. 

(6) Multiple Stakeholders: There are many different disciplines and corresponding 
stakeholders involved in the Systems Engineering process across all organizations re-
gardless of their size. However, classic engineering disciplines like Hardware Engineer or 
Software Engineer are still viewed as “isolated” disciplines within the organizations. 
The particular role of “Systems Engineer” is only defined in larger organizations. In 
85% of the large organizations, different stakeholders and disciplines are interlinked 
and coordinated by following a defined process. For SMEs, this figure is less than 20%. 
Instead, personal communication is the preferred way of smaller companies. Between 
60% and 70% of the companies create joint teams and perform joint workshops and 
meetings for coordination purposes. 

(7) External Suppliers: Almost 60% of the organizations get less than 25% of their 
product parts supplied from external sources. Nevertheless, one third of the organiza-
tions obtain up to 50% from external suppliers. The average proportion of externally 
supplied product parts is about 25% across all organizations. The average criticality in 
terms of intellectual property of externally supplied components is 3,5 on a scale from 
1 (not critical) to 10 (highly critical). 

(8) Systems Engineering Practices: Among the already established practices, the 
companies largely (close to or more than 50%) picked methods, techniques, and ap-
proaches related to model-driven development, requirements engineering, test-driven 
development, and verification and validation. Further practices mentioned by at least 
more than one organization include integrated tool chains, virtual engineering, and an 
overall system architecture. Whereas large organizations focus on model-driven devel-
opment as well as system verification and validation, which was chosen by 60% and 
80%, respectively, around 80% of the SMEs picked test-driven development as their 
top established practice. 

(9) Impacted Processes: The participants agreed with a huge majority that the tech-
nical and software implementation engineering process areas (as defined by ISO/IEC 
15288 and 12207) are mostly impacted by Systems Engineering practices. 

(10) Specification Languages and Tools: More than 80% of the participants referred 
to UML as the major relevant specification language. Large organizations tend to use 
SysML as a more specific language for system modeling. Furthermore, domain-specific 
languages were mentioned in general. More than 50% of the Systems Engineering 



Study Key Outcomes 
and Recommendations 

Copyright © Fraunhofer IESE 2016 37 

tools mentioned were related to modeling different aspects of the overall system or the 
software as part of the system. Furthermore, 30% mentioned requirements and 40% 
simulation tools as being relevant. Moreover, close to 10% of the answers mentioned 
self-developed tools. Mostly these are used in the area of simulation (about 5%). 
Moreover, close to 40% mentioned the adoption of more formal methods and model-
based system development approaches instead of informal/textual specifications as a 
technological area to be addressed in the near future. 

(11) Improvement Potential: The greatest improvement potential for Systems Engi-
neering lies in increased virtual engineering and better integration of the tool chains 
used, with 50% of the participants mentioning each of these areas. The demand seems 
to be bigger for SMEs. For nearly 40% of the larger organizations, improved program 
management (aka. project portfolio management) is also worth mentioning. For close 
to 40% of the SMEs, a higher degree of automation was seen as an important im-
provement potential. 

(12) Systems Engineering Capabilities: The majority of organizations/units rely on 
internal and external training programs (close to 100% and more than 60%, respec-
tively) to improve the capabilities related to Systems Engineering. Furthermore, partici-
pation in Systems Engineering conferences was mentioned by more than 50% of the 
overall participants and more than 60% of those from the larger organizations. 

4.2 Recommendations and Areas of Activity 

From the given 12 key outcomes of the study, a few recommendations and areas of ac-
tivity can be derived for organizations striving towards Systems Engineering. Please 
note that these recommendations and actions are motivated by the study outcomes, 
but they are somewhat subjective as there may be other strategies for reaching the 
same goal. 

We split the recommendations and areas of activity into those more closely related to 
organizational development and those more technically related to how organizations 
develop systems. 

4.2.1 Organizational Development 

(O1) Change Management Strategy: 80% of the companies stated that change 
management within the organization is the key challenge for Systems Engineering (see 
outcome #4). Therefore, it is important to openly think about which organizational 
structure and processes are best suited for coping with Systems Engineering challenges. 
In particular, it is important to include all stakeholders in that process in order to gain 
acceptance and to better motivate/communicate changes and carefully plan how these 
changes should happen (see outcome #6). 



Study Key Outcomes 
and Recommendations 

  Copyright © Fraunhofer IESE 2016 38 

(O2) Systems Engineering Competencies: Creating internal and buying-in external 
training programs on different Systems Engineering topics was obligatory for the ma-
jority of organizations (see outcome #12). Additionally, we would recommend that or-
ganizations participate in Systems Engineering conferences and become active mem-
bers of corresponding communities in order to get information about recent develop-
ments and exchange experiences regarding Do’s and Don’ts (see outcome #12). 

(O3) Software Engineering Competencies: As 85% of the companies stated that 
software plays a major role in their products although they come from a more hard-
ware-oriented development world (see outcome #2) and as this will increase in the fu-
ture, it is important for companies to build up or maintain an appropriate number of 
Software Engineering competencies. This number depends on the degree to which 
their product depends on software and what the major IP (intellectual property) and 
USP (unique selling point) of the company is. If the IP/USP is in software or is becoming 
software, it would make sense to build up their own resources in the area of Software 
Engineering. If software is only a means to an end, it makes at least sense to build up 
competencies for managing external software suppliers and partners (see outcome #7). 

(O4) Project Portfolio Management: Larger organizations should place special focus 
on the management of the overall portfolio of their projects and the interconnections 
and dependencies among them, as this was mentioned as a special issue for improve-
ment (see outcome #11). 

4.2.2 Technical Development 

(T1) Integrated Systems Engineering Approach: As time to market for new prod-
ucts is getting shorter and product complexity is increasing at the same time (see out-
come #1), it is important to efficiently and effectively deliver value to the customers. 
Systems Engineering is considered very important for dealing with this issue, especially 
when it comes to system platforms and system integration (see outcome #3). This re-
quires a well-integrated and aligned approach across all disciplines involved (see out-
come #6). Especially when it comes to technical and implementation processes, com-
panies should carefully think about what impact Systems Engineering has (see outcome 
#9) and – as there are no silver bullet approaches – what a custom-tailored process 
should look like that best fits the needs of the individual organization (see outcome 
#5). 

(T2) System Requirements Engineering: The complexity of system requirements and 
the number of product variants has increased over time. As a matter of fact, in the near 
future they will further increase as (even) more cross-disciplined development will come 
into play (see outcome #1). This forces companies to think about how to elicit/develop 
requirements on the system level and how to manage them systematically over time. 
This also includes how to break them down into lower-level (especially software) re-
quirements (see outcome #2). 



Study Key Outcomes 
and Recommendations 

Copyright © Fraunhofer IESE 2016 39 

(T3) Model-driven Systems Development: The study confirmed that model-driven 
development of systems is seen as a key practice for an organization. Larger organiza-
tions have already implemented it at least partially (see outcome #8) or see this as an 
essential improvement potential (see outcome #11). The actual use of formal modeling 
languages varies, even though there are very prominent ones such as UML and SysML. 
In the area of tool support, a variety of tools were mentioned as well (see outcome #9). 
An organization should therefore carefully evaluate which aspects of the system speci-
fication to model and what appropriate language and tool support is available. This 
tool selection should also be influenced by the interfaces provided by suitable tools to 
ensure seamless integration into the tool landscape of the development process (see 
outcome #10 and T6). 

(T4) System Verification and Validation: Companies should think about establishing 
proper techniques and methods for system verification and validation and specifically 
for test-driven system development, as these areas were seen as crucial by many organ-
izations (see outcome #8). Additionally, the development process should ensure that 
system verification and validation is properly linked to system requirements at all times. 

(T5) Virtual Systems Engineering: As the complexity of products is increasing (see 
outcome #1) and development is becoming more multi-disciplined (see outcome #6), it 
becomes difficult and very cost-intensive to compose the different system parts physi-
cally. Therefore, companies should think about the feasibility of using virtual engineer-
ing systems based on sound models. In the future, this is seen as a major improvement 
potential for speeding up development (see outcome #11). Some companies have al-
ready introduced or developed their own simulation tools for system verification and 
validation (see outcome #10). 

(T6) Integrated Systems Engineering Tool Chains: As we have observed, a variety 
of different tools are used for Systems Engineering in the organizations. Furthermore, 
companies have developed their own tools for particular tasks and for overcoming the 
shortages of existing tools (see outcome #10). One major point for improvement is bet-
ter integration of the tool chains (see outcome #11)., Especially when starting to do 
Systems Engineering, companies should therefore put special emphasis on the interop-
erability of their tools and on having as much integration across the tool chain as possi-
ble. 



Selected Industrial 
Practices and Cases 

  Copyright © Fraunhofer IESE 2016 40 

5 Selected Industrial Practices and Cases 

Based on the results of the study, this part will give more details on how selected best 
practices for Systems Engineering can be implemented in the organization. Among the 
already established practices, the companies largely (close to or more than 50%) picked 
methods, techniques, and approaches related to the following areas: 

1. Model-driven System Development 
2. System Requirements Engineering 
3. System Verification and Validation 

As the greatest potential improvement areas for Systems Engineering, the following ar-
eas were mentioned by 50% of the companies: 

4. Systems Engineering Tool Chain Integration 
5. Virtual Engineering of Systems 

Whereas we have some evidence that the former three are at least partially applied at 
more than half of the interviewed companies, the latter two still seem to be at the be-
ginning of their practical application and implementation, but are considered to have 
great potential for Systems Engineering. Therefore, in the following, for each of these 
five practice areas, we will give a brief description, highlight some concrete examples of 
methods, techniques, and approaches, present industrial cases of their implementation 
and application in real settings, and summarize some recommendations and lessons 
learned. 

5.1 Model-driven System Development 

The development of modern systems is becoming increasingly difficult and challenging. 
Domains such as automotive and avionics demand high integrity levels between hard-
ware and software to ensure proper execution of their systems. A commercial airplane, 
for example, contains systems that control ground proximity, navigation, and engine 
commands, amongst others. Because of that, it is important to ensure that each aspect 
of the system is properly described and understood. 

Model-driven System Development (a.k.a. Model-based Systems Engineering) is a sys-
tem development approach that is based on the refinement of models. This refinement 
of models usually happens on different abstraction levels until such a level of detail is 
achieved that the system can be implemented immediately, or, ideally, extracted auto-



Selected Industrial 
Practices and Cases 

Copyright © Fraunhofer IESE 2016 41 

matically from the models. It usually provides a set of integrated modeling techniques 
and tools to support all substantial development disciplines, starting with model-based 
requirements engineering, via model-based design and model-driven implementation 
(which can be partially automated by extracting code from models) to the certification 
of these systems (using modeling techniques such as fault trees). 

Model-driven Software Development is a part of the overall model-driven system devel-
opment that incorporates different techniques across the entire spectrum of software 
development activities, including model-driven requirements engineering, model-driven 
design, code generation from models, model-driven testing, model-driven software 
evolution, and more.  

Model-driven system development is an important technique for managing the com-
plexity of modern systems. It provides a set of integrated modeling techniques and 
tools to support all substantial development disciplines including the certification of 
these systems (e.g., using modeling techniques such as fault trees). 

5.1.1 Example Approaches 

The SPES 2020 methodology (Pohl, Achatz, & Broy, 2012) for the development of em-
bedded systems is a concrete method for model-driven system development. The SPES 
(Software Platform Embedded Systems) 2020 initiative was a joint research and devel-
opment project between academia and industry partners from different domains like 
avionics, automotive, health care, and energy. The SPES 2020 modeling framework or-
ganizes the development artifacts of model-driven system development into four archi-
tecture viewpoints. 

Requirements Viewpoint: This view aims at supporting the requirements engineering 
process in eliciting, documenting, and managing the system requirements. In SPES, the 
elicitation of requirements starts with the identification of the system context, such as 
users, stakeholders, and external systems that somehow interact with the system. These 
entities are documented in a system/context diagram of the requirements viewpoint, 
which shows the system as a black box and documents the interaction of the system 
with its environment. This diagram complements traditional RE techniques (like scenari-
os) and helps in eliciting functional and quality requirements, business drivers, and con-
straints (e.g., legal constraints), which are all documented in the requirements view-
point. 

Functional Viewpoint: Every system has a set of functions that each offers a particu-
lar service to the users of the system. One of the main purposes of the functional view-
point is to identify and formalize these functions. In the SPES methodology, the context 
diagram and the scenarios from the requirements viewpoint are used as the starting 
point for identifying the user functions. The functional viewpoint then formalizes these 
user functions by defining the input/output behavior, e.g., by means of functional data-



Selected Industrial 
Practices and Cases 

  Copyright © Fraunhofer IESE 2016 42 

flow diagrams. The functional viewpoint is also the place where dependencies between 
functions are identified and where a refinement of user functions into sub-functions 
takes place. 

Logical Viewpoint: Once the functional model has been established, the next step is 
to identify which of the functionalities are to be implemented by software or hardware 
(or as a mixture). Hence, the logical model describes how the functionality of the sys-
tem (as identified in the functional perspective) should be decomposed into a network 
of communicating and cooperating components. The logical viewpoint is the first place 
where design decisions should be taken and is hence solution-oriented, whereas the 
functional viewpoint is ideally only problem-oriented. 

Technical Viewpoint: In this viewpoint, the hardware and software elements are de-
tailed in implementation entities that realize the logical components. Besides the de-
tailed software design, this view includes the Hardware Network View, which describes 
networks of hardware elements such as buses, sensors, and actuators, and the De-
ployment View, which shows the deployment strategy of logical software components 
to hardware entities.  

While the views sketched above seem to indicate a waterfall-like process from the re-
quirements viewpoint to the technical viewpoint, the SPES methodology is actually 
more iterative. Usually, one starts by eliciting requirements on a high abstraction level, 
which are formalized in the functional model and realized at the logical/technical level. 
Each of the identified components at the logical level can itself be regarded as a system 
under discussion with its own more concrete requirements, functions, logical and tech-
nical solutions. 

5.1.2 Practical Cases 

The methodology was successfully applied at industry companies from different do-
mains (Pohl, Achatz, & Broy, 2012). We describe a practical case in the context of de-
veloping the control software of a large telescope array that monitors gamma rays in 
the universe (Achary & Actis, 2013). The architecture model was created using a refined 
UML profile that supports the SPES viewpoints (Kuhn & Antonino, 2014). A detailed 
description of the work can be found in (Oya, et al., 2016). 

The Cherenkov Telescope Array (CTA) is an initiative to build two large arrays of Che-
renkov gamma-ray telescopes. It will serve as an open observatory to a wide astrophys-
ics community and will provide a deep insight into the non-thermal high-energy uni-
verse. Cherenkov telescope systems use the effect that gamma rays produce particle 
cascades that emit so-called Cherenkov light showers, which can then be detected by 
cameras hosted by ground-based telescopes. The aims of CTA can be roughly grouped 
into three main themes serving as key science drivers: understanding the origin of cos-
mic rays and their role in the universe, understanding the nature and variety of particle 



Selected Industrial 
Practices and Cases 

Copyright © Fraunhofer IESE 2016 43 

acceleration around black holes, and searching for the ultimate nature of matter and 
physics beyond the standard model. 

The array control and data acquisition (ACTL) project within CTA will deliver the soft-
ware to control and acquire the data from the CTA instrumentation. The objective is to 
create and maintain a single architecture model that will allow tight integration of 
software development and coordination processes and decisions. First, the model will 
provide the main input for managing the project management organization, for exam-
ple for generating a work breakdown structure (WBS), creating the effort estimates, 
evaluating the risks, and providing input for the definition of priorities and the identifi-
cation of unplanned work. It will also provide specifications/contracts for the developers 
of the team so they can understand the context of the software to be developed, and 
will hence be used to automatically generate the developer documentation. Further-
more, the model should drive the verification and validation process to test the code 
provided by the developers. Finally, it will allow communicating the requirements, deci-
sions, and adopted technical solutions inside and outside the work packages. 

5.1.3 Lessons Learned and Recommendations 

Based on (Pohl, Achatz, & Broy, 2012), a few recommendations and lessons learned 
can be derived from the practical evaluation in the different domains: 

• The SPES methodology provided traceable and seamless support for all engineering 
life cycle phases with various levels of integration depending on the domain. The 
highest level of integration was achieved in the automotive area. 

• It allowed for early consideration and verification of system properties, addressing 
users’ expectations regarding completeness, consistency, safety, or traceability. 

• The methodology addressed safety, standard compliance, and certifiability needs. 
For instance, in the automotive domain, the logical architecture allowed for auto-
mated transformation into AUTOSAR application components. The integrated de-
sign and safety modeling showed that engineers can seamlessly work on the same 
model. 

Furthermore, it was concluded that integrated development such as supported by the 
SPES methodology is essential for the engineering of embedded systems. 

5.2 System Requirements Engineering 

Several institutions provide definitions of the term Requirements Engineering (RE). The 
International Requirements Engineering Board (IREB) defines it as: “Requirements engi-
neering is the systematic and methodologically sound approach to requirements analy-



Selected Industrial 
Practices and Cases 

  Copyright © Fraunhofer IESE 2016 44 

sis and management” (Sophist). The IEEE defines RE as: “Requirements Engineering is 
the branch of systems engineering concerned with managing desired properties and 
constraints of software-intensive systems and with goals to be achieved in the envi-
ronment. It is concerned with these aspects from the problem analysis stage to the im-
plementation and maintenance stages of a system. Additional variety is added because 
of differences in issues that arise in different domains, ranging from public administra-
tion software to workflow systems, groupware and embedded systems and control 
software”. 

The goal of RE is to develop good requirements and to manage them during develop-
ment with respect to risks and quality. RE is the discipline within systems and software 
engineering that bridges the entire life cycle and thus determines the success or failure 
of a product or project. It is an engineering discipline because of its disciplined and sys-
tematic approach (Ebert, 2014). 

5.2.1 Example Approach 

The processes used for RE vary widely depending on the application domain, the peo-
ple involved, and the organization developing the requirements. The following generic 
activities are common to all processes according to (Software Engineering Institute, 
Carnegie Mellon): 

• Requirements Elicitation: The process of discovering, reviewing, documenting, and 
understanding the user’s needs and constraints for a system. 

• Requirements Analysis: The process of refining the user’s needs and constraints. 
• Requirements Validation: The process of ensuring that the system requirements are 

complete, correct, consistent, and clear. 
• Requirements Specification: The process of documenting the user's needs and con-

straints clearly and precisely. 
• Requirements Change Management: The process of scheduling, coordinating, and 

documenting the requirements engineering activities (that is, elicitation, analysis, 
specification, and verification). 

For each of these generic activities, lots of techniques exist that can be applied to exe-
cute the processes. A good overview of best practices can be found in the article “Re-
quirements Engineering: Best Practice” (Fricker, Grau, & Zwingli, 2014).  

RE is a very crucial part of a product or project. Many studies show that projects have 
failed because of poor requirements analysis (The Standish Group, 2014). Even though 
plenty of state-of-the-art RE techniques exist, adequate implementation and satisfacto-
ry execution are obviously still missing. A good overview of frequently observed defi-
ciencies in RE processes is provided in the Trends & Benchmark Reports on Software 
Development (SwissQ & Gallen, 2014). Typical deficiencies are misunderstandings in 
communication, continuously growing or changing requirements, or time pressure.  



Selected Industrial 
Practices and Cases 

Copyright © Fraunhofer IESE 2016 45 

To overcome these inadequacies, new methods of Model-based Requirements Engi-
neering have been developed in recent years. Model-based Requirements Engineering 
(MBRE) is an approach in which requirements and related business and development in-
formation are collected, organized, and structured not only by using natural language, 
but also with formal, semi-formal, or informal modeling languages (Teufl, Khalil, & 
Mou, 2013). These models are mostly a reduced and descriptive representation of the 
subject of discussion compared to the real world. Models in MBRE allow documenting 
requirements and their relationships to other artifacts in a (mostly graphical) language 
with less interpretation possibilities than documenting in natural language only would 
present. Additionally, they can provide abstraction and different perspectives on the da-
ta and therefore support communication and discussion among all stakeholders. Mod-
eling with UML or SysML is common practice in MBRE. 

5.2.2 Practical Cases 

The German Federal Ministry of Defense issued a directive for an efficient and uniform 
product acquisition and utilization process. This process, named Customer Product 
Management CPM (Germany Federal Ministry of Defense, 2012), describes procedures 
for RE, procurement, and in-service support in the German armed forces. It covers the 
whole system life cycle from the early concept stage in the system life cycle up to re-
tirement on a very high level. The directive defines three main phases in the system life 
cycle: 

• Analysis phase: In the analysis phase, the first objective is to identify capability gaps 
and to prioritize measures for closing such gaps. In this phase, most of the RE activ-
ities and system modeling activities are performed. 

• Production phase: In the production phase, the objective is to provide us-
ers/operators with suitable and operational products and services in good time. Re-
quirements models and system models are further developed and form the basis of 
a specification for an award of construction contract. 

• In-service phase: The in-service phase covers the use of products and services in ac-
cordance with their intended purpose. All measures for maintaining and restoring 
operational viability, capability, and readiness must be carried out in order to en-
sure the safe and economic use of products and services under realistic conditions 
and in a legal manner until disposal. 

Together with the Federal Office of Bundeswehr Equipment, Information Technology 
and In-Service Support (BAAINBw) as the representative of the German Federal Ministry 
of Defense, Fraunhofer IESE conducted selected parts of the analysis phase and produc-
tion phase with a systems engineering approach for a new modular multipurpose com-
bat ship class. Since this project has a very large size and budget and the time schedule 
is fixed and tight, a pragmatic approach for systems engineering was applied (Webel, et 
al., 2015). 



Selected Industrial 
Practices and Cases 

  Copyright © Fraunhofer IESE 2016 46 

Analysis Phase part 1: The RE activities in the first part of the analysis phase of the 
CPM process resulted in a hierarchical catalog of functional requirements prioritized ac-
cording to their importance or criticality (Prioritized Requirements Catalog). This catalog 
is based on defined operation and usage conditions and related usage profiles.  

• Requirements were formulated in a functional way in order to document only the 
operational needs and leave open the technical solution. 

• Requirements were categorized hierarchically into functional groups according to 
common performance parameters (such as functionality and operation on the top 
level). 

• Requirements were prioritized in order to identify criteria for stopping the project in 
case of non-fulfillment. 

• Requirements were weighed against each other to document the contribution of 
each requirement to the organizational capabilities and to separate important and 
non-important requirements. 

• All requirements underwent a quality assurance process in order to fulfill the quali-
ty criteria according to IEEE 830:1998 Software Requirements Specification, such as 
correctness, completeness, consistency, traceability to their origin, verifiability, un-
ambiguity, etc.  

Finally, an operational architecture according to the Architecture Data Model of the 
Armed Forces, an adaption of the NATO architecture framework, version 3.1 (NATO), 
was developed. This architecture framework is based on SysML and extends the model-
ing capabilities with domain-specific extensions individually adapted to the needs of de-
fense projects. In the analysis phase part 1, the operational architecture contained 
mainly 

• a capability view model with a high-level understanding of the organizational ca-
pabilities with a description of the tasks and activities, operational elements, and 
information exchange, 

• an operational view model that generally reflects requirements or operations from 
a user’s perspective (scenarios), and 

• a top-level glimpse at a systems view model with actual or proposed implementa-
tions and descriptions of systems, and the system context. 

An integrated approach for RE and system modeling, which was specifically developed 
along with tool chain integration, ensured that the requirements model and the system 
models were in sync. For example, the functional requirements were translated into sys-
tem functions mapped to the initial system components defined in the systems view of 
the architecture model.  

Additionally, a style guide helped to specify requirements in a good linguistic style and 
gave advice on how to comply with the requirements definition procedure and tools. 



Selected Industrial 
Practices and Cases 

Copyright © Fraunhofer IESE 2016 47 

Analysis Phase part 2: In the second part of the analysis phase in the CPM process, 
further functional and non-functional requirements were added. The requirements 
model grew up to more than 10,000 requirements of different types such as technical, 
logistics, product life cycle, project and risk management, and quality management. A 
system structure was developed and all requirements were linked to the system struc-
ture on the one hand and to the functional requirements model built in the first part of 
the analysis phase on the other hand in order to ensure traceability.  

The architecture model was extended by a system architecture according to the Archi-
tecture Data Model of the Armed Forces. The systems view was extended by a much 
more detailed structure view in synchronization with the system structure of the re-
quirements model. Important system interconnections among system components and 
between system components and the context were added. 

In this phase, the integrated approach for RE and system modeling was further devel-
oped to map technical requirements to the system components in the system model 
and to keep them in sync during the analysis phase. 

Production phase: With the beginning of the production phase according to the CPM 
process, the requirements model and the system architecture were further specified 
and detailed in negotiation with industry partners with the aim of developing a system 
specification as a foundation for ordering the realization. This phase is currently ongo-
ing. 

Both the directive regarding the definition of requirements and the directive regarding 
the model-driven design are highly integrated. In all models for requirements, opera-
tional architectures, and system architectures, the same functional and non-functional 
requirements were specified and mapped to the appropriate model elements to ensure 
traceability in all phases of the system life cycle. To perform this efficiently, a custom-
ized tool chain was developed comprising requirements management, system model-
ing, traceability and impact analysis, prioritization of requirements, and communication 
and collaboration. 

All tools were customized and extended with their integrated programming engines or 
additional scripts to realize seamless interaction according to the defined processes for 
RE and system modeling. Additionally, several operation manuals were created and 
several tutorials were performed for the stakeholders to assist each of the more than 
100 stakeholders involved in the CPM processes of the project in collecting the required 
data with the right tools and using the tools in the right way for processing and for-
warding the data to the next step in the process. 



Selected Industrial 
Practices and Cases 

  Copyright © Fraunhofer IESE 2016 48 

5.2.3 Lessons Learned and Recommendations 

Based on the lessons learned while collaborating with the customer in this project, the 
following recommendations can be provided from the Fraunhofer IESE point of view 
regarding the introduction and usage of RE methods and RE tools in such kinds of in-
dustry projects. 

• Requirements Elicitation: The selection of an appropriate requirements elicitation 
technique should depend on the factors influencing the project and especially on 
the expected availability and skills of the required stakeholders. These factors repre-
sent considerable risks that have to be addressed. The RE primer in (SOPHIST, 2016) 
contains a selection matrix that provides very good hints on which elicitation tech-
nique is best suited for which influencing factors. 

• Requirements Analysis: The analysis process of refining the users’ needs and con-
straints should be considered in the overall project plan. Refining users’ needs and 
constraints often leads to additional work, where the original stakeholders have to 
be involved again and have to agree on suggested changes. This process can often 
be supported very strongly with RE tools by creating specific selections and view-
points on the requirements that have to be reworked. In the project described 
above, it was very valuable that the RE tool used was highly configurable and could 
be extended with scripts to create these specific selections and views. 

• Requirements Validation: The process of ensuring completeness, correctness, clear-
ness, and consistency of requirements should be aligned with standardized quality 
measures such as defined in the standard IEEE:830. This can be significantly sup-
ported by using an RE tool that is able to define constraints on individual attributes 
or can be extended by scripts or programs to check individual project-/product-
specific parameters automatically. Reworking requirements when quality deficits 
are detected should always be foreseen in the project schedule and the original 
stakeholders should be involved again to resolve the issues.  

• Requirements Specification: Documenting the users’ needs and constraints clearly 
and precisely with all necessary attributes can largely be supported by an RE tool. It 
should be possible to adjust or extend this tool with a scripting engine to build up 
tool chains in order to provide comprehensive support for all requirements engi-
neering processes.  

• Requirements Change Management: Defining project-/product-specific processes 
related to the requirements engineering processes and using all available tools to 
support these processes (e.g., analysis tools, import/export tools, modeling tools) is 
necessary to keep control of all data processed. A collaboration tool specifically 
configured to support these processes helps to implement this and forces all stake-
holders to follow the defined processes. One additional specific finding of the large 



Selected Industrial 
Practices and Cases 

Copyright © Fraunhofer IESE 2016 49 

project described above was that implementing a Change Control Board in the RE 
processes that checks and releases intended changes on requirements while con-
sidering their impact on other project/product artifacts, helps to avoid unintended 
changes in the requirements database. 

5.3 System Verification and Validation 

The extensive use of software in technical devices in many embedded systems domains 
has become the main driver for new innovations. The growing complexity of the soft-
ware-controlled parts increases the impact of software defects on the quality properties 
of the integrated system. The effectiveness and efficiency of system verification and val-
idation processes play a crucial role in the development of software and software-
intensive systems in order to meet the specified quality requirements and the customer 
needs. 

Innovative model-based quality assurance techniques have been developed to analyze, 
verify, and validate the different output artifacts of the development activities, includ-
ing requirements, design models, program code, and integrated electronic control 
units. Recent trends aim at early quality assurance, such as virtual validation techniques 
(Feth, Bauer, & Kuhn, 2015) and highly automated verification and validation using 
mathematical models and appropriate tool chains. 

5.3.1 Example Approaches 

The Integrated Quality Assurance (InQA) approach is a systematic method for the com-
bination of static and dynamic quality assurance techniques such as different formal 
verification, review, and testing techniques (Elberzhager, Rosbach, & Bauer, 2014). The 
combined techniques benefit from each other to exploit synergy effects, i.e., results 
from one applied quality assurance technique, such as component coverage and defect 
distribution, is used to guide and fine-tune the subsequent ones in order to improve 
the quality assurance process.  

The InQA approach consists of three main steps: definition, calibration, and application. 
In the definition step, the objective of the integrated application of the quality assur-
ance techniques and the context has to be defined, such as experience of the test en-
gineers, available effort, or type and maturity of the software being developed. The 
second step, calibration, is continuously applied to achieve a valid and mature 
knowledge base for smart integration. First of all, the appropriate quality assurance 
techniques have to be selected, the order needs to be defined, and the level (e.g., 
component or system level) of their application must be determined. Then the data and 
the metrics that should be considered, such as defect numbers, complexity of compo-
nents, and effort numbers, have to be defined. The third step, application, deals with 



Selected Industrial 
Practices and Cases 

  Copyright © Fraunhofer IESE 2016 50 

the validation of assumptions and the evaluation of how this knowledge can be used to 
exploit synergies during quality assurance activities. 

5.3.2 Practical Cases 

The applicability and impact of the InQA approach for technical systems from the 
transportation domains have been assessed in the large-scale European project MBAT 
(Kläs, Bauer, Dereani, Söderqvist, & Helle, 2015). Within this evaluation project, the In-
QA approach was tailored and adapted for the early quality assurance of technical sys-
tems. The set of techniques comprised the verification and validation of different sys-
tem design artifacts by means of system simulation, model-based quality assurance, 
i.e., techniques that work with specific mathematical models for the verification of 
properties, such as models of the code structure or system composition, and the deriva-
tion of functional test cases, such as data flow or behavior models. 

In the MBAT project, research partners, tool vendors, and industrial use case providers 
from 39 organizations and eight countries jointly investigated and developed quality as-
surance techniques and the corresponding tool platforms for safety-related software-
intensive systems from different transportation domains, i.e., automotive, avionics, and 
rail systems. 13 industrial use cases from different leading-edge companies like Daimler 
and Volvo were conducted and evaluated. The use cases stated the context, settings, 
and problems that should be addressed by the technologies and provided the oppor-
tunity to get quantitative feedback by conducting a corresponding case study. The ad-
dressed use cases covered different steps of the system and software quality assurance 
processes as well as different quality properties, such as functional correctness, time 
behavior, and compliance with standards, e.g. ISO 26262 (ISO, 2011) for passenger 
cars, to evaluate the range of applicability of the techniques. For example, the automo-
tive use cases by Daimler (a light control subsystem of a passenger car) and Volvo (a 
brake-by-wire subsystem) dealt with the verification and validation of software design 
artifacts and program code.  

In the evaluation, the relevant goals and assessment aspects of the industrial use cases 
were determined and refined. The main goals comprised the verification and validation 
costs, the defect costs, and the system quality. All use cases and the underlying com-
bined quality assurance approaches, including InQA, were assessed regarding these 
goals in several iterations. 

5.3.3 Lessons Learned and Recommendations 

The costs for the application of verification and validation techniques could be signifi-
cantly reduced, by an average of 32% considering the data collected in the 13 case 
studies. The costs caused by remaining defects in subsequent development stages 
could also be reduced by an average of 27%. The goals for the system quality could 
not be aggregated like the cost items due to the variety of the sub-goals assessed, such 



Selected Industrial 
Practices and Cases 

Copyright © Fraunhofer IESE 2016 51 

as test coverage and post-release defects. In the use cases, all sub-criteria of this goal 
could be improved by at least 8%. The significant improvement of the cost and quality 
aspects in all use cases are very promising for the future application of combined quali-
ty assurance approaches, including InQA. 

5.4 Systems Engineering Tool Chain Integration 

In industrial practice, a series of method- and tool-related impediments complicate sys-
tems engineering in general and model-based systems engineering in particular.  

First, there exists a broad heterogeneity of engineering methods, tools, and data in-
volved in the engineering platforms across the life cycle. Second, there is an increasing 
need to bridge the gap between development platforms and operational ones, for in-
stance in the context of safety-critical systems. By doing so, human in-the-loop or virtu-
al testing, heterogeneous co-simulation, or monitoring and maintenance of large-scale 
distributed applications can improve the development and decision-making processes in 
large developing organizations. Third, the distributed and multi-tier nature of develop-
ment teams in modern large-scale organizations, spread over multiple countries and 
suppliers, is an issue. The common denominator of these factors is the need to interop-
erate seamlessly in today’s (still fragmented) tool landscapes. 

5.4.1 Example Approaches 

Across the automotive, aerospace, rail, and health care domains, the CRYSTAL (critical 
system engineering acceleration) project researched different approaches with broad 
industry involvement to improve method and tool interoperability in systems engineer-
ing. The project achieved valuable results, e.g., an overview of typical engineering 
methods and tool chains in the different application domains, clearly identified interop-
erability challenges, an Interoperability Specification (IOS), improved tool interfaces and 
adapters, and findings related to sound systems engineering use cases (CRYSTAL, 
2016).  

The key idea promoted in the CRYSTAL project was to rely on standardized integration 
interfaces to support lifecycle interoperability with the aim of overcoming redundant in-
tegration problems across the boundaries of engineering disciplines, application do-
mains, and tool providers.  

Such standardized integration interfaces have to define lightweight and generic con-
cepts as a common denominator for all the artifacts used holistically throughout the 
development cycle. In the context of lifecycle interoperability, the focus is on the se-
mantics of the links and dependencies among the artifacts crossing the boundaries be-
tween the engineering disciplines. 



Selected Industrial 
Practices and Cases 

  Copyright © Fraunhofer IESE 2016 52 

The emerging open standard OSLC (Open Services for Lifecycle Collaboration) was tak-
en as a basis to tackle the interoperability problems (Open Services for Lifecycle 
Collaboration, 2016). OSLC defines a set of specifications focusing on the support of 
life cycle activities. In the meantime, the OSLC open initiative has grown up from a 
“loosely coupled” web community to a member of the open standard organization 
OASIS. Many commercial and open source products have adopted the open standard 
and the number of participating organizations is constantly growing.  

Although OSLC is already an excellent basis for an interoperability specification, some 
additional needs for interoperability were identified and the following extensions were 
proposed by the CRYSTAL project:  

• OSLC Configuration and Change Management specification, 
• OSLC Tracked Resource Set specification, allowing a server to expose an exact set 

of resources, track additions to and removals from the set, and track changes to 
the resources in the set. 

With these specifications, OSLC is a promising approach to mitigate interoperability 
challenges in systems engineering and has gained momentum in the tool industry.  

5.4.2 Practical Cases 

The public use cases of the CRYSTAL project in the aerospace and automotive domains 
provide good overviews of typical engineering methods, related interoperability issues, 
and possible tool integrations. The aerospace case focuses on the specification, analy-
sis, design, and simulation of a regional aircraft de-icing system. The process steps cov-
ered can be seen in Figure 14. 



Selected Industrial 
Practices and Cases 

Copyright © Fraunhofer IESE 2016 53 

 

Figure 14:  Process steps covered by the CRYSTAL public aerospace case (Source: Airbus Group) 

The automotive case covers different stages in the development of a car – from power-
train design on the vehicle level down to the development of microprocessors and 
software – and provides insights into the engineering settings of different automotive 
companies. The case focuses on interoperability challenges arising throughout the en-
tire V-model, including system analysis, variability or variant management, functional 
safety, and traceability. The covered stages and aspects can be found in Figure 15. 



Selected Industrial 
Practices and Cases 

  Copyright © Fraunhofer IESE 2016 54 

 

 Figure 15:  Stages and aspects covered by the CRYSTAL public automotive case (Source: AVL) 

The practice areas and tools included in the different use cases comprise the following 
areas and cover a substantial amount of tool functionality typically used in systems en-
gineering settings:  

• Advanced traceability: Reqtify, Rational SSE, RELM 
• Model-based systems engineering: RequisitePro, IBM DOORS NG, Rhapsody, De-

sign Manager, PTC Integrity, Modeler 
• Requirements quality analysis: Requirements Quality Suite 
• Test management: TVS assureSign 
• Safety analysis: Fault Tree+ 
• Simulation: Simulink, OpenModelica 
• Variability management: pure::variants 
• Process automation: Rational Method Composer, Rational Team Concert 

With respect to the interoperability of the tool chains, engineers typically expect the fol-
lowing:  

• Semantic links are created across tool boundaries supporting uniform impact and 
coverage analysis, reporting and metrics. 

• Requirements are checked against quality characteristics and improvement is guid-
ed. 

• System design and functional safety are seamlessly integrated using shared arti-
facts. 



Selected Industrial 
Practices and Cases 

Copyright © Fraunhofer IESE 2016 55 

• Simulation models focusing on distinct system aspects can be coupled into a holis-
tic system simulation. 

• Variability models manage explicit variation points in the various artifact types and 
resolve the variabilities of different product variants. 

• Workflow support is provided and ensures process compliance. 

5.4.3 Lessons Learned and Recommendations 

The experience in the use cases shows that tool interoperability can be improved sub-
stantially based on OSLC, and has advanced significantly in recent years. An increasing 
number of tool providers such as IBM, PTC, PureSystems, Siemens, etc., are providing 
standardized interfaces to interoperate with other tools and have shown compelling 
tool interoperation scenarios among tools from different tool providers. 

Besides these advances, certain complexities regarding the setup and maintenance of 
the tool adapters and data also became apparent in the use cases. Another issue is link 
management. For the time being, OSLC does not really specify where links should be 
managed and how – this is completely up to the developer of the interfaces. Regarding 
the implementation of OSLC-based interfaces, it became apparent that it is quite chal-
lenging to implement an OSLC interface for an existing tool because the availability of 
the source code is a prerequisite. 

A main lesson learned with regard to tool interoperability is that tool interoperation still 
remains an issue to be investigated in detail on a tool-by-tool basis in a concrete set-
ting. The generalization of meta models and tool interfaces for the typical interopera-
tion scenarios is work in progress and it iss unclear whether this will be achieved at all. 
Following a use-case-driven approach to improve tool interoperation is a good practice 
to identify shortcomings and value-adding improvements in the tool chains in a sys-
tematic and measurable way. This can also help to educate the engineers in new tool-
ing capabilities. 

Beyond tool interoperation, open data formats can also help to archive important data 
without facing the challenge of having to reinstall complicated tool infrastructures in 
order to access the data of past projects. 

5.5 Virtual Engineering of Systems 

Virtual engineering substitutes real artifacts with simulation models. Substituted arti-
facts may be mechanical parts that are substituted by CAD models, hardware platforms 
under development that are substituted by virtual platforms that implement instruction 
set simulators, and software implementations that are substituted, e.g., by Simulink 
behavior models.  



Selected Industrial 
Practices and Cases 

  Copyright © Fraunhofer IESE 2016 56 

The main purpose of virtual engineering is to ensure important properties and features 
of artifacts under development. Virtual prototypes are available much earlier than real 
prototype implementations. Evaluating features with virtual prototypes enables quanti-
tative evaluations much earlier than if implementations/realizations were to be used. 
This lowers risks when developing complex systems and reduces the effort required for 
rework because defects or wrong specifications are detected early. 

Since complex systems consist of a large number of different artifacts, it is challenging 
for developers to create simulations that include all relevant aspects. This is, however, 
necessary in future designs to detect emergence effects, which happen due to the in-
teractions of different parts of systems. One example for the evaluation of emergence 
effects is the performance evaluation of car-to-car communication, which depends on 
properties of the wireless networks used, driver behavior, traffic models, and protocol 
behavior. Simulation tools are usually specialized and have a narrow focus. They only 
simulate selected effects. Simulation of emergence effects is therefore hard to evaluate 
without integrating simulators for all relevant parts of the system under development. 
In the last few years, simulator coupling has been getting popular as a means to over-
come this situation.  

5.5.1 Example Approaches 

Developing simulator couplings is difficult because the models of computation and 
communication (MOCCs) of simulation models often differ. These need to be integrat-
ed consistently (Kuhn, Forster, Braun, & Gotzhein, 2013).  

An MOCC defines when a simulation model is executed and how it communicates. 
Three common MOCCs are Discrete Time, Discrete Event, and Continuous Time mod-
els. One common application in industry is the virtual evaluation of Electrical/Electronic 
(E/E) architectures. E/E architectures consist of hardware control units that are connect-
ed by networks. Different networks are connected via gateways. Tasks are deployed to 
electronic control units. Depending on the implemented control algorithms, a task 
might be sensitive with respect to scheduling and communication delays, or sensitive to 
communication and scheduling jitter. The decision about whether one task is to be de-
ployed on a specific processor of a particular controller might therefore significantly af-
fect the performance of an algorithm. Furthermore, network communication and safety 
mechanisms can be evaluated using the virtual E/E architecture. 

5.5.2 Practical Cases 

The following application example is an anonymized result from an industry project. 
The project was about the development of a safety mechanism for a remotely con-
trolled lift that is attached to a truck. The lift should be controlled with a smartphone, 
which is considered to be an unsafe device. The safeguarding mechanism was to be 
implemented on a gateway hardware in the truck, while the smartphone was treated 



Selected Industrial 
Practices and Cases 

Copyright © Fraunhofer IESE 2016 57 

as a simple sensor. The safety mechanism consisted of a UI concept on the smartphone 
that ensured that the measured user intensions were unambiguous, a communication 
protocol on the smartphone that implemented a safe communication layer, the com-
munication layer on the gateway device, and a logic that evaluated the received results. 
This logic needed to ensure that the measured sensor inputs represented the user’s in-
tensions, i.e., that no sensor defects were masking valid user inputs, that no transmis-
sion errors occurred, and that no conflicting commands were received. 

 

Figure 16:  Application example for virtual evaluation 

The virtual evaluation had to check that the gateway logic yielded safe system behavior 
in all cases. This was implemented by defining a number of test cases (scenarios) that 
yielded correct behavior, and by defining rules describing safe system behavior. The 
simulation injects faults according to fault models, which include, for example, bit flips 
in communication networks or stuck-at faults of sensors. In all cases, the system must 
either yield the intended behavior of the users or one of the predefined safe behaviors. 
In the case of the hydraulic lift, this was a stop of all movements. 

5.5.3 Lessons Learned and Recommendations 

By using virtual engineering, it is possible to also develop revolutionary concepts that 
are not an evolution of existing approaches, but rather realize new ideas. Simulations 
enable developers to collect experience and to quantitatively evaluate and compare the 
performance of different approaches. The ability to evaluate critical aspects early and 
without risks in simulation in conjunction with the increasing speed and accuracy of 
simulation models continuously increases the importance and applicability of virtual en-
gineering techniques. 

In the near future, product complexity will significantly increase and system develop-
ment will become more multi-disciplined. As a consequence, the assembly of large sys-
tems will become more difficult and cost-intensive. 

Hardware-in-the-Loop testing is a common practice in industry today. However, inte-
gration testing is performed at a very late project stage. The correction of defects is 



Selected Industrial 
Practices and Cases 

  Copyright © Fraunhofer IESE 2016 58 

therefore very costly, leads to complications and to unnecessary project delays. Consid-
ering the increasing system complexity and architecture, integration testing should start 
as soon as possible in the development process. Virtual Hardware-in-the-Loop testbeds, 
created by coupling existing simulators, should be considered as an efficient approach.  



Bibliography 

Copyright © Fraunhofer IESE 2016 59 

Bibliography 

acatech - National Academy of Science and Engineering. (2016, 9 23). Retrieved from 
http://www.acatech.de 
Achary, B., & Actis, M. (2013). Introducing the CTA confept. Astroparticle Physics, 43(3). 

Bruner, J. (2013). Industrial Internet. O'Reilly Media, Inc. 

Cavalcante, E., Pereira, J., Alves, M., Maia, P., Moura, R., Batista, T., . . . Pires, P. (2016). On the 
interplay of Internet of Things and Cloud Computing: A systematic mapping study. Computer 
Communications. 

Conforto, E., Rossi, M., Rebentisch, E., Oehmen, J., & Pacenza, M. (2013). Survey Report: 
Improving Integration of Program Management and Systems Engineering. Philadelphia: PMI and 
INCOSE. 

CRYSTAL. (2016). Retrieved from CRYSTAL - Critical System Engineering Acceleration: 
http://www.crystal-artemis.eu 

Ebert, C. (2014). Requirements Engineering - Industry Practice. Vector Consulting Services. 
Retrieved 09 08, 2016, from 
http://vector.com/portal/medien/vector_consulting/publications/Ebert_RequirementsEngineering_
Overview_EN.pdf 

Elberzhager, F., Rosbach, A., & Bauer, T. (2014). An Integrated Analysis and Testing Methodology 
to Support Model-Based Quality Assurance. Software quality days (SWQD 2014). Vienna: 
Springer. 

Elm, J. P., & Goldenson, D. R. (2012). The Business Case for Systems Engineering Study: Results 
of the Systems Engineering Effectiveness Study. Carnegie Mellon University, Software 
Engineering Institute, AESS, NDIA. 

Estefan, J. A. (2007). Survey of Model-Based Systems Engineering (MBSE) Methodologies. 
INCOSE MBSE Focus Group. 

Federal Ministry for Economic Affairs and Energy. (2016, 9 23). Plattform Industrie 4.0. Retrieved 
from http://www.plattform-i40.de 

Feth, P., Bauer, T., & Kuhn, T. (2015). Virtual Validation of Cyber Physical Systems. Software 
Engineering and Management 2015 (SE 2015) (pp. 201-206). Dresden: Springer. 

Fricker, S., Grau, R., & Zwingli, A. (2014). Requirements Engineering: Best Practice. In S. A. 
Fricker, C. Thümmler, & A. Gavras, Requirements Engineering for Digital Health (pp. 25-38). 
Heidelberg, New York, Dordrecht, London: Springer. 

Gausemeier, P.-I., Dumitrescu, R., Steffen, D., Czaja, A., Wiederkehr, O., & Tschirner, C. (2015). 
Systems Engineering in industrial Practice. Heinz Nixdorf Institute, Fraunhofer Institute for 
Production Technology, Unity AG. 



Bibliography 

  Copyright © Fraunhofer IESE 2016 60 

Germany Federal Ministry of Defense. (2012). Customer Product Management (amended). 
German Federal Ministry of Defense. 

Hankel, M.; Bosch Rexroth. (2015). Industrie 4.0: The Reference Architectural Model Industrie 4.0 
(RAMI 4.0). Frankfurt am Main, Germany: ZVEI - German Electrical and Electronic Manufacturers’ 
Association. 

Heidrich, J., Trendowicz, A., & Ebert, C. (2016). Exploiting Big Data's Benefits. IEEE Software, 
33(4), 111-116. 

IBM. (n.d.). IBM Rational Harmony for Systems Engineering: The Harmony Process. IBM. Retrieved 
09 22, 2016, from 
http://www.ibm.com/support/knowledgecenter/SSB2MU_8.1.5/com.btc.tcatg.user.doc/topics/atg
reqcov_SecSysControllerHarmony.html 

ISO. (2011). ISO 26262: Road vehicles – Functional safety. International Organization for 
Standardization. 

Jazdi, N. (2014). Cyber physical systems in the context of Industry 4.0. IEEE International 
Conference on Automation, Quality and Testing, Robotics (pp. 1-4). IEEE. 

Kagermann, H., Helbig, J., Hellinger, A., & Wahlster, W. (2013). Recommendations for 
implementing the strategic initiative INDUSTRIE 4.0: Securing the future of German 
manufacturing industry. Final report of the Industrie 4.0 Working Group, Forschungsunion. 
Retrieved from 
http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Mat
erial_fuer_Sonderseiten/Industrie_4.0/Final_report__Industrie_4.0_accessible.pdf 

Kläs, M., Bauer, T., Dereani, A., Söderqvist, T., & Helle, P. (2015). A Large-Scale Technology 
Evaluation Study: Effects of Model-Based Analysis and Testing. 37th International Conference on 
Software Engineering (ICSE 2015) (pp. 119-128). Stockholm: IEEE Computer Society. 

Kuhn, T., & Antonino, P. (2014). Model Driven Development of Embedded Systems. Embedded 
Software Engineering Kongress (ESE).  

Kuhn, T., Forster, T., Braun, T., & Gotzhein, R. (2013). FERAL – Framework for Simulator 
Coupling on Requirements and Architecture Level. ACM-IEEE International Conference on Formal 
Methods and Models for System Design. Portland, USA. 

Lee, J., Lapira, E., Bagheri, B., & Kao, H. (2013). Recent advances and trends in predictive 
manufacturing systems in big data environment. Manufacturing Letters, 1(1), 38-41. 

Mell, P., & Grance, T. (211). The NIST Definition of Cloud Computing. Gaithersburg, Maryland, 
USA: National Institute of Standards and Technology. 

Minerva, R., Biru, A., & Rotondi, D. (2015). Towards a definition of the Internet of Things (IoT). 
IEEE Internet Initiative. 

Naab, M., Knodel, J., Kuhn, T., & Rost, D. (2016). Smart Ecosystems Reference Model. Fraunhofer 
IESE. 

NATO. (n.d.). NATO Architecture Framework RFCP Regarding NAF V3.1 Chapter 5: NATO 
Architecture Framework Metamodel (NMM) and Architecture Data Exchange Specification 
(ADES). Retrieved from http://www.nhqc3s.nato.int/ARCHITECTURE 

Open Services for Lifecycle Collaboration. (2016). Retrieved from http://open-services.net 



Bibliography 

Copyright © Fraunhofer IESE 2016 61 

Oya, I., Füßling, M., Oliveira Antonino, P., Conforti, V., Hagge, L., Melkumyan, D., . . . the CTA 
consortium. (2016). The Software Architecture for the Cherenkov Telescope Array. SPIE - 
International Society for Optics and Photonics Conference and Exhibition 2016. 9913. Edinburgh, 
Scotland, UK: Software and Cyberinfrastructure for Astronomy III. 

Pisching, M., Junqueira, F., dos Santos Filho, D., & Miyagi, P. (2015). AN ARCHITECTURE FOR 
ORGANIZING AND LOCATING SERVICES TO THE INDUSTRY 4.0. ABCM International Congress of 
Mechanical Engineering. Rio de Janeiro, Brazil. 

Pohl, K., Achatz, R., & Broy, M. (2012). Model-Based Engineering of Embedded Systems- The 
SPES 2020 Methodology. Springer. 

Software Engineering Institute, Carnegie Mellon. (n.d.). A Framework for Software Product Line 
Practice - Requirements Engineering. Retrieved 09 08, 2016, from 
http://www.sei.cmu.edu/productlines/frame_report/req_eng.htm 

SOPHIST. (2016). RE Primer. Retrieved 09 21, 2016, from 
https://www.sophist.de/publikationen/wissen-for-free/ 

Sophist. (n.d.). FAQ Requirements Engineering. Retrieved 09 08, 2016, from 
https://www.sophist.de/en/requirements/requirements-engineering/faq-requirements-
engineering/ 

SwissQ, & Gallen, U. o. (2014). Trends & Benchmarks Report in Software Development. Zürich: 
SwissQ Consulting AG. Retrieved 09 08, 2016, from http://swissq.it/wp-
content/uploads/2016/02/Agile_RE_Testing-Trends_und_Benchmarks2014.pdf 

Teufl, S., Khalil, M., & Mou, D. (2013). Requirements for a Model-based Requirements: 
Systematic Literature Review and Survey. Munich: fortiss GmbH. Retrieved 09 08, 2016, from 
http://download.fortiss.org/public/projects/af3/research/2013/MbRE_tool_requirements_for_embe
dded_systems.pdf 

The Standish Group. (2014). CHAOS Report. The Standish Group. 

Wang, H., Osen, O., Li, G., Li, W., Dai, H., & Zeng, W. (2015). Big data and industrial internet of 
things for the maritime industry in northwestern norway. IEEE Region 10 Conference TENCON 
(pp. 1-5). IEEE. 

Webel, C., Darting, S., Schmitt, M., Kleinberger, T., Braun, R., & Weber, J. (2015). Pragmatisches 
Systems Engineering in einem Großprojekt mit Einschränkungen. Tag des Systems Engineering 
2015 (pp. 323-332). Munich: Carl Hanser Verlag GmbH & Co. KG. 

 

 


	Management Summary
	1 Trends towards Systems Engineering
	1.1 Trend towards System Integration
	1.2 Motivation for Systems Engineering
	1.3 Background Information
	1.3.1 Industrie 4.0
	1.3.2 Cyber-Physical Systems (CPS)
	1.3.3 Internet of Things (IoT)
	1.3.4 Cloud Computing
	1.3.5 Internet of Services
	1.3.6 Industrial Internet
	1.3.7 Big Data


	2 Related Studies on Systems Engineering
	2.1 Model-Based Systems Engineering (MBSE) Methodologies
	2.2 Improving the Integration of Program Management and Systems Engineering
	2.3 Systems Engineering in Industrial Practice
	2.4 Systems Engineering Effectiveness
	2.5 Model-Driven Development

	3 Systems Engineering Study Results
	3.1 Context
	3.2 Challenges
	3.3 Solution Approaches
	3.4 Outlook and Capabilities
	3.5 Discussion of Potential Threats and Limitations

	4 Study Key Outcomes and Recommendations
	4.1 Key Outcomes
	4.2 Recommendations and Areas of Activity
	4.2.1 Organizational Development
	4.2.2 Technical Development


	5 Selected Industrial Practices and Cases
	5.1 Model-driven System Development
	5.1.1 Example Approaches
	5.1.2 Practical Cases
	5.1.3 Lessons Learned and Recommendations

	5.2 System Requirements Engineering
	5.2.1 Example Approach
	5.2.2 Practical Cases
	5.2.3 Lessons Learned and Recommendations

	5.3 System Verification and Validation
	5.3.1 Example Approaches
	5.3.2 Practical Cases
	5.3.3 Lessons Learned and Recommendations

	5.4 Systems Engineering Tool Chain Integration
	5.4.1 Example Approaches
	5.4.2 Practical Cases
	5.4.3 Lessons Learned and Recommendations

	5.5 Virtual Engineering of Systems
	5.5.1 Example Approaches
	5.5.2 Practical Cases
	5.5.3 Lessons Learned and Recommendations


	Bibliography

