Intelligent Techniques for Software Product Line Engineering

2nd International Workshop on Formal Methods and Analysis in Software Product Line Engineering

Univ.-Prof. DI Dr. Alexander Felfernig

Institute for Software Technology
Graz University of Technology, Austria
alexander.felfernig@ist.tugraz.at
Research @ ASE @ IST @ TU Graz

Recommendation Technologies for Complex Products & Services

Recommendation & Decision Technologies for Requirements Engineering

Intelligent Assistance for Managing Complex Constraint Sets

Intelligent Systems

Software Engineering

Decision Technologies

FLEXTRONICS
Persuasive Technologies for Software Development

wüstenrot

COHAVE
Consumer Behavior & Decision Modeling for Recommender Systems

PLAIN-IT

 ELSEVIER
Book: „Configuration Systems in Practice“

wüstenrot

ilogs

Recommender Systems in AAL

Research @ ASE @ IST @ TU Graz

Univ.-Prof. DI Dr. Alexander Felfernig

Research
Intelligent Systems

- **Applied AI**: Systems solving problems by simulating intelligent behavior. [Russel and Norvig, 2003]

- **Specific Type**: Constraint-based Systems. [Freuder 1997]

- **Examples**:
 - Planning
 - Production
 - Resources
 - Software Releases
 - Recommendation
 - Financial Services
 - Consumer Electronics
 - e-Tourism
 - Configuration
 - Automotive
 - Financial Services
 - Software Product Lines

- **Application**: CRM, Online Selling, Call Center, Corporate Memory, Company Web, Project Management
Example: Car Configuration

Variables: \(V = \{v_1, v_2, \ldots, v_n\} \)

Domains: \(D = \{d_1, d_2, \ldots, d_n\}, d_j = \text{dom}(v_j) \)

Product Knowledge:
\(C_{KB} = \{c_1, c_2, \ldots, c_q\} \)

Customer Requirements:
\(C_R = \{c_{q+1}, c_{q+2}, \ldots, c_s\} \)

Configuration Task

Consistency Check
- Completion
- Explanation

Constraint Solver (Configurator)

Solution (Consistent Configuration)
\(S = \{v_1 = a_1, v_2 = a_2, \ldots, v_n = a_n\}, a_j \in \text{dom}(v_j) \)

Example: Car Configuration

Variables: \(V = \{\text{type, pdc, fuel, skibag, 4-wheel, color}\} \)

Domains:
- \(\text{dom}(\text{type}) = \{\text{city, limo, combi, xdrive}\} \)
- \(\text{dom}(\text{pdc}) = \{\text{yes, no}\} \)
- \(\text{dom}(\text{fuel}) = \{1.7, 2.6, 4.2\} \)
- \(\text{dom}(\text{skibag}) = \{\text{yes, no}\} \)
- \(\text{dom}(\text{4-wheel}) = \{\text{yes, no}\} \)
- \(\text{dom}(\text{color}) = \{\text{red, blue, gray, black}\} \)

Product Knowledge (CKB):
- \(c_1: \text{4-wheel = yes } \rightarrow \text{type = xdrive} \)
- \(c_2: \text{skibag = yes } \rightarrow \text{type } \neq \text{city} \)
- \(c_3: \text{fuel = 1.7 } \rightarrow \text{type = city} \)
- \(c_4: \text{fuel = 2.6 } \rightarrow \text{type } \neq \text{xdrive} \)
- \(c_5: \text{type = combi } \rightarrow \text{skibag = yes} \)
- \(c_6: \text{type = limo } \rightarrow \text{pdc = yes} \)

Customer Requirements (CR):
- \(c_7: \text{type = city} \)
- \(c_8: \text{fuel = 1.7} \)
- \(c_9: \text{4-wheel = no} \)
- \(c_{10}: \text{pdc = yes} \)
- \(c_{11}: \text{color = black} \)

Solution:
\(S = \{\text{type = city, fuel = 1.7, 4-wheel = no, pdc = yes, color = black}\} \)

Motivation
Example: Feature Set Configuration

\[\text{V} = \{ \text{Phone}, \text{Calls}, \text{GPS}, \text{Screen}, \text{Media}, \text{Basic}, \text{Colour}, \text{HighRes}, \text{Camera}, \text{MP3} \} \]

\[\text{D} = \{ \text{dom(Phone)}=\text{dom(Calls)}= \ldots = \text{dom(MP3)}=\{\text{yes},\text{no}\} \} \]

\[\text{C}_{\text{KB}} = \{ c_1: \text{Phone} = \text{yes}, c_2: \text{Phone} = \text{yes} \iff \text{Calls} = \text{yes}, c_3: \text{GPS} = \text{yes} \rightarrow \text{Phone} = \text{yes}, c_4: \text{Phone} = \text{yes} \iff \text{Screen} = \text{yes}, c_5: \text{Media} = \text{yes} \rightarrow \text{Phone} = \text{yes}, c_6: \neg(\text{GPS}=\text{yes} \land \text{Basic} = \text{yes}), c_7: \text{Basic}=\text{yes} \rightarrow \text{Colour} = \text{no} \land \text{HighRes}=\text{no}, c_8: \text{Colour}=\text{yes} \rightarrow \text{Basic} = \text{no} \land \text{HighRes}=\text{no}, c_9: \text{HighRes}=\text{yes} \rightarrow \text{Colour} = \text{no} \land \text{Basic}=\text{no}, c_{10}: \text{Camera} = \text{yes} \rightarrow \text{HighRes} = \text{yes}, c_{11}: \text{Camera} = \text{yes} \rightarrow \text{Media} = \text{yes}, c_{12}: \text{MP3} = \text{yes} \rightarrow \text{Media} = \text{yes}, \ldots \} \]

\[\text{S} = \{ \text{Phone}=\text{yes}, \text{Calls}=\text{yes}, \text{GPS}=\text{yes}, \text{Screen}=\text{yes}, \text{Media}=\text{yes}, \text{Basic}=\text{no}, \text{Colour}=\text{no}, \text{HighRes}=\text{yes}, \text{Camera}=\text{yes}, \text{MP3}=\text{no} \} \]

\[\text{C}_R = \{ c_{13}: \text{GPS}=\text{yes}, c_{14}: \text{Camera} = \text{yes} \} \]
Why Configuration Technologies?

- Less Errors (e.g., incompatible components)
- Faster Response Times (e.g., immediate feedback for customer/user)
- Pre-informed Customers (knowledge about product/service)
- Increased Trust (explanations)
- Corporate Memory (standard level of service)

Weniger Fehler
Schnellere Antwortzeiten
Vorinformierte Kunden
Corporate Memory
Gesteigertes Vertrauen

[Felfernig and Kiener 2005]
[Felfernig et al. 2006]
Goal of this Presentation

Provide answers to the following questions:
• How to develop constraint-based systems efficiently?
• How to improve the quality of the underlying user interfaces?

Important Aspects:

1. Modeling the Knowledge Base
2. Debugging the Knowledge Base
3. Supporting the User
1. Modeling Knowledge Bases

Challenge: Knowledge representation languages have to be understandable (CSP, DCSP, GCSP) [Mittal and Falkenhainer 1990], [Fleischanderl et al. 1998]

Result (among others): Integration to commercial environment [Felfernig et al. 2006]
UML-based Modeling

- UML Profile (Configuration)
- "Well-formedness" Rules
- OCL Parser
- Context-sensitive Interface
- Automated Generation

context Computer inv:
((self.HDUnit->select(oclIsTypeOf(SCSIUnit))->size>0) and
(self_MB->select(oclIsTypeOf(MB1))->size>0)) implies false

Example: Generated Application

Debugging

1. Modeling Knowledge Bases

2. Debugging Knowledge Bases

3. Supporting the User

Challenge: Complex knowledge bases with frequent maintenance steps
[Barker et al. 1989], [Fleischanderl 2002], [Felfernig et al. 2007]

Approach: Automated Debugging of Knowledge Bases
[Felfernig et al. 2004, 2006]

Result:
Prototypical integration to commercial environment
[Felfernig et al. 2006]
Study @TUGraz: Are we able to identify faulty constraints in a knowledge base?

- **Course (2010):** Advanced Topics in AI
- **#Participants:** 14 Students (21% fem., 79% male.)
- **#Constraints:** 10 (binary)
- **#Variables:** 10 (domain size: 3)
- **Goal:** Conflicts & Diagnosis

Knowledge Bases: #Conflicts/Cardinality(Conflicts)

<table>
<thead>
<tr>
<th>A1</th>
<th>A2</th>
<th>B1</th>
<th>B2</th>
<th>C1</th>
<th>C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/2</td>
<td>3/2</td>
<td>2/3</td>
<td>3/3</td>
<td>2/6</td>
<td>3/6</td>
</tr>
</tbody>
</table>

Scenario: Inconsistency in Testing

Scenario: \(\exists t_i \in T = \{t_1, \ldots, t_T\} \): inconsistent \((C_{KB} \cup t_i) \)

Conflict Set (CS): \(CS \subseteq C_{KB} \) s.t. \(\exists t_i \in T \): inconsistent \((CS \cup t_i) \)

Minimal (CS): \(\neg \exists CS' \) s.t. \(CS' \subset CS \)

Explanation (\(\Delta \)): \(\Delta \subseteq C_{KB} \): \((C_{KB} - \Delta) \cup t_i\) consistent \(\forall t_i \in T \)

Minimal (\(\Delta \)): \(\neg \exists \Delta' \) s.t. \(\Delta' \subset \Delta \)

Motivation • Modeling • Debugging

Example:
- \(c_1: x > y \)
- \(c_2: y = 2 \)
- \(t_1: x = 2 \)

CS: \(\{c_1, c_2\} \)

\(\Delta_1 \): \(\{c_1\} \)

Should Be: Test cases accepted
But: some not accepted
Scenario: Redundant Constraints

A constraint c_i is called redundant iff $C_{KB} - \{c_i\} \models c_i$. If this condition is not fulfilled, c_i is said to be non-redundant.

C_{KB}
C_1 C_2 C_3 \ldots C_q

Should Be: Not redundant
But: Redundancy exists

Scenario: Redundant (C_{KB})
Conflict Set (CS): $CS \subseteq C_{KB}$: $CS \cup \neg C_{KB}$ inconsistent
Minimal (CS): $\neg \exists CS'$ s.t. $CS' \subset CS$

Configuration Benchmarks → Most knowledge bases are redundant!
ConfigWorks Debugging Environment

User Support

Challenge: Interaction support has potential for improvement, for example, „no solution could be found“ [Felfernig et al. 2004]

Approach: Explanations show the path to the solution [Felfernig et al. 2006, 2009, 2011]

Result:
- Integration in commercial applications
- Algorithmic improvements (FastDiag) [Felfernig et al. 2006, 2009, 2011]
Scenario: Inconsistent Requirements

\[\Delta_1 \Delta_2 \ldots \Delta_d \]

Should Be: Consistent Requirements

But: Requirements inconsistent

Scenario: Inconsistent \((C_{KB} \cup C_R)\)

Conflict Set (CS): \(CS \subseteq C_R: CS \cup C_{KB}\) inconsistent

Minimal (CS): \(\neg \exists CS' \text{ s.t. } CS' \subset CS\)

Explanation (\(\Delta\)): \(\Delta \subseteq C_R: C_{KB} \cup (C_R - \Delta)\) consistent

Minimal (\(\Delta\)): \(\neg \exists \Delta' \text{ s.t. } \Delta' \subset \Delta\)

Determining Explanations (C_R)

- Minimal Cardinality Explanations [Reiter 1987]
- Explanations with high Probability [DeKleer 1990]
- Utility-based Explanations [Jannach and Liegl 2006]
- Corrective Explanations [O’Sullivan et al. 2005]
- Representative Explanations [O’Sullivan et al. 2007]
- kNN-based Explanations [Felfernig et al. 2009]
- Ensemble-based Explanations [Felfernig et al. 2011]

► Existing Approaches: good prediction quality but inefficient.
► FastDiag: Efficient determination of preferred explanations.

FastDiag: Preferred Explanations

$C_{KB} = \{c_1: 4\text{-wheel} = \text{yes} \rightarrow \text{type} = \text{xdrive},$
$c_2: \text{skibag} = \text{yes} \rightarrow \text{type} \neq \text{city},$
$c_3: \text{fuel} = 1.7 \rightarrow \text{type} = \text{city},$
$c_4: \text{fuel} = 2.6 \rightarrow \text{type} \neq \text{xdrive},$
$c_5: \text{type} = \text{combi} \rightarrow \text{skibag} = \text{yes},$
$c_6: \text{type} = \text{limo} \rightarrow \text{pdc} = \text{yes}\}$

$C_R = \{c_7: \text{type} = \text{limo},$
$c_8: \text{fuel} = 1.7,$
$c_9: 4\text{-wheel} = \text{yes},$
$c_{10}: \text{pdc} = \text{no},$
$c_{11}: \text{color} = \text{black}\}$

Explanation:

$\Delta_1 = \{c_7, c_8\}$
FastDiag: Example

Principle: „divide and conquer“

Motivation • Modeling • Debugging • User Support

Conflict Sets:
- \{c_7, c_8\}
- \{c_7, c_9\}
- \{c_7, c_{10}\}
- \{c_8, c_9\}

Explanation:
\[\Delta_3 = \{c_8, c_9, c_{10}\} \]

[Felfernig et al. 2011]
FastDiag: Runtimes (msec)

- Breadth First
- Best First
- Corrective Relax
- FastDiag

<table>
<thead>
<tr>
<th>SHORT</th>
<th>SOURCE</th>
<th># VAR</th>
<th># CON</th>
</tr>
</thead>
<tbody>
<tr>
<td>telecom</td>
<td>www.variantum.com</td>
<td>242</td>
<td>84</td>
</tr>
<tr>
<td>bicycle</td>
<td>www.itu.dk</td>
<td>35</td>
<td>78</td>
</tr>
<tr>
<td>car</td>
<td>www.itu.dk</td>
<td>101</td>
<td>113</td>
</tr>
<tr>
<td>finserv</td>
<td>www.hypo-alpe-adria.at</td>
<td>25</td>
<td>15</td>
</tr>
</tbody>
</table>

Renault Knowledge Base (Configuration Benchmark)

[Felfernig et al. 2011]
FastDiag: Precision

<table>
<thead>
<tr>
<th>Methode</th>
<th>N=1</th>
<th>N=3</th>
<th>N=5</th>
</tr>
</thead>
<tbody>
<tr>
<td>breadth-first</td>
<td>0.12</td>
<td>0.39</td>
<td>0.62</td>
</tr>
<tr>
<td>utility-based</td>
<td>0.17</td>
<td>0.48</td>
<td>0.74</td>
</tr>
<tr>
<td>similarity-based</td>
<td>0.17</td>
<td>0.49</td>
<td>0.73</td>
</tr>
<tr>
<td>probability-based</td>
<td>0.15</td>
<td>0.47</td>
<td>0.74</td>
</tr>
<tr>
<td>ensemble-based</td>
<td>0.17</td>
<td>0.50</td>
<td>0.76</td>
</tr>
<tr>
<td>fastdiag</td>
<td>0.18</td>
<td>0.54</td>
<td>0.70</td>
</tr>
</tbody>
</table>

\[
\text{precision} = \frac{\#(\text{correct predictions})}{\#(\text{predictions})}
\]

avg. #diagnoses: 19.42
std.dev.: 4.51
Research Issues

Understandability Cognitive Psychology (CP)

Complexity metrics Software Engineering + CP

Refactoring rules Knowledge Engineering + CP

Personalized Explanations Machine Learning (ML) + Recommender Systems (RS)

Intelligent Navigation Support ML + RS

Intelligent Maintenance Support ML + RS

<table>
<thead>
<tr>
<th>1st feature</th>
<th>2nd feature</th>
<th>3rd feature</th>
<th>4th feature</th>
<th>5th feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>user1</td>
<td>f2</td>
<td>f1</td>
<td>f4</td>
<td>f3</td>
</tr>
<tr>
<td>user2</td>
<td>f2</td>
<td>f1</td>
<td>f4</td>
<td>f3</td>
</tr>
<tr>
<td>user3</td>
<td>f1</td>
<td>f2</td>
<td>f3</td>
<td>f4</td>
</tr>
<tr>
<td>user4</td>
<td>f2</td>
<td>f1</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

User 4 would receive a recommendation for f4 (since the majority of nearest neighbors looked at f4).

Summary

• **Constraint-based systems are very popular** (e.g., CRM, Online Selling, Call Center, Project Management, Software Engineering)

• **Challenge**: large & complex knowledge bases

• Basis for **efficient development processes**:
 • domain-specific modeling languages
 • automated (personalized) debugging techniques

• **Efficient user interaction** on the basis of preferred explanations

• **Future research focus**: human-centered interaction with complex knowledge spaces.
Questions?
References (1)

References (2)

References (3)

References (4)

References (5)

Thank You!