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Making agriculture sustainable with AI and autonomous 
systems while keeping safety in mind

Data-based services using Artificial Intelligence (AI) 
are supposed to solve optimization problems and 
detect patterns, thereby helping us to achieve a 
more sustainable agriculture overall – through better 
decisions and optimally automated processes and 
machines. But can this work and can the risks be 
managed?

The transformation of agriculture and the integra-
tive sustainability triangle 

The quote from Heraclitus from around 2500 years ago (Hera-
clitus of Ephesus, ~520 - ~460 B.C.) “Nothing is as constant as 
change” fit then as it does today, and is currently emblematic 
of agriculture. Agriculture is facing many challenges, and there 
is even talk of a transformation of agriculture. At the moment, 
almost all types of agricultural enterprises are undergoing 
change. In animal husbandry, an upheaval is currently taking 
place regarding the existing husbandry conditions, and the focus 
is on appropriate animal welfare. However, many questions 
still remain open here, especially with regard to the forms of 

husbandry, including building regulations and how farms can 
realize all this (profitably). Furthermore, the impact of animal 
husbandry on the climate (e.g., manure output, methane emis-
sions from ruminants) is being critically analyzed. Crop farming 
is also undergoing change, with increased (crop-related) 
challenges such as resistance to herbicides, tighter regulation 
of fertilizer use, or declining biodiversity. Overall, demands on 
agriculture are increasing and work processes are becoming 
more complex. In addition, numerous official environmental 
regulations, verification and documentation obligations must 
also be complied with nowadays [1].

Agriculture must meet ecological demands without neglecting 
economic feasibility and social aspects. The integrative sustain-
ability triangle [2] illustrates the interplay and tension between 
ecological, economic, and social aspects (see Figure 1): If you 
pull on one corner of the triangle and hold on to the other two 
corners, tension is created. A crucial point in this tension is the 
weighting of the individual sustainability aspects, which are 
ultimately determined by the government and thus indirectly 
by society. 
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Autonomous systems as key to meeting competing 
sustainability goals

Digitalization and innovative technologies play a crucial role 
in bringing the competing sustainability goals closer together. 
Figuratively speaking, the square “social-ecological-economic” 
in Figure 1 can be drawn larger because of the expected tech-
nology leap and can thus cover larger portions of the individual 
sustainability aspects. Autonomous systems, in particular, hold 
enormous potential for making agriculture more sustainable 
(e.g., resource-conserving use of agricultural inputs with 
regard to climate and environmental protection). This makes 
it possible to continue producing high-quality and sustainable 
food, without causing unacceptably low profit margins for 
farmers or inacceptable food costs for poorer segments of 
society. The application areas in which autonomous systems 
hold great potential are described in the position paper of the 
working group “Adaptive Autonomous Agricultural Systems” 
published by the German Federal Ministry of Food and Agri-
culture (BMEL) [3]. In general, the areas of “crop cultivation”, 
“animal husbandry”, and cross-sector applications are listed. In 
crop cultivation, for example, autonomous field robots can be 
used – either individually or in swarms, depending on size – to 
remove weeds or to treat small areas (this is conceivable down 
to individual plants) selectively with fertilizer or crop protection 
products as needed. The first such robots are already on the 
market and are performing tasks such as seeding and mechan-
ical weed control. According to Shamshiri et al. (2018) [4], 
rapid technological developments can be observed in the field 
of agricultural robotics.  

Autonomous systems are not limited to field robots, but are 
also used in animal husbandry. Milking robots have been in 
use on many farms for quite some time already. In addition, 
feeding and animal control, in particular, offer potential for  
autonomous systems. Furthermore, autonomous systems are 
also finding their way into cross-sectoral areas, such as remote 
sensing and cooperation between machines. Another example 
is the mapping of the value chain by linking autonomous sys-
tems. Based on this, various optimization options are possible, 
such as dynamic adaptation to different situations.  

Figure 1: Integrative Sustainability Model [2]
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One conceivable example in logistics is route planning that 
can dynamically adapt to different situations (congestion risk, 
road conditions, loading points, diesel consumption) by linking 
autonomous systems. Overall, in agriculture as well as in the 
entire value chain, autonomous systems hold great potential 
for producing food and feed more sustainably (in economic, 
social, and ecological terms).   
 
Market potential of autonomous systems and 
safety as a major barrier to market entry

The usage potential of autonomous systems with a focus on 
crop cultivation was also investigated in the study by Dörr 
et al. [5] in 2019. Based on interviews with experts, it was 
predicted how high the market share of different levels of 
autonomy would be in relevant international markets by 2045. 
For the European market, for example, the second-highest 
level (“supervised autonomous”) was predicted to account for 
a market share of over 80%. With the exception of the African 
market, the market share of autonomous systems of the high-
est level (“entirely autonomous machine”) was estimated to be 
around 10–50% in 2045. 

The experts cite the guarantee of safety as a major obstacle 
in this context. In line with this, a central recommendation for 
action in the BMEL position paper mentioned above [3] is the 
“development of new safety concepts and their manifestation 
in regulations and/or standards”. 

Definition of “autonomous systems” and levels of 
autonomy

In order to anchor the requirements and safety concepts for 
autonomous systems in regulations and/or standards, it is first 
necessary to clarify what autonomous systems actually are. 
However, current laws and guidelines such as the EU Machin-
ery Directive and associated harmonized standards such as DIN 
EN ISO 12100 do not use the term “autonomous”. Similar to 
“Artificial Intelligence”, there are very different understandings 
of what an “autonomous system” is. Of course, clarification 
of the terminology does not only concern the application area 
of agriculture, but also other areas such as logistics or the mili-
tary. Furthermore, this does not only affect one country or one 
economic area. On questions such as “What is the difference 
between autonomous and fully automated?” (also see the IESE 
blog post ”Autonomous or maybe just highly automated?”), an 
intersectoral and international consensus is being sought, but 
there is as yet no universally accepted definition.  
 
Autonomy is generally understood as a gradual concept. How-
ever, the way different levels of autonomy are defined differs. 
The SAE (Society of Automotive Engineers) levels in the auto-
motive field map various aspects such as the role of the driver 
or the complexity of the driving task onto a one-dimensional 

scale. In the Autonomy Levels for Unmanned Systems (ALFUS) 
from the military domain, independence from humans is relat-
ed to the complexity of the operational environment and the 
complexity of the mission (Figure 2).  

In the position paper of the BMEL working group “Adaptive 
Autonomous Agricultural Systems” [3], reference is also made 
to different levels of autonomy, and a potential standardization 
of the levels in the context of ISO 18497 “Safety of partially 
automated, semi-autonomous and autonomous machinery” 
[7] is envisaged. The draft of ISO 18497, which is currently 
under development, includes Table 1 below to help explain the 
distinction between partially automated, semi-autonomous, 
and autonomous [7]:  
 
A function is here defined as an activity or behavior of a 
machine. “Steering” is given as an example. With regard to 
the term “automated”, the following definition is provided by 
ISO 18497: “Technique, process, or system for operating and 
controlling machine functions by automatic means.” There are 
inconsistencies in these definitions and they may need to be 
revised. First of all, the question arises as to whether the activ-
ity of a machine is not always automated, due to the fact that 
this activity is carried out by the machine. The complexity of 
the tasks “Implement driver’s steering request”, “Drive along 
a specified route”, and “Find a suitable route and drive along 
it” differs significantly, of course. The higher the complexity of 
a task, the more difficult it is to automate it completely, i.e., to 
have it done entirely by a machine. This view fits in with the 
ALFUS taxonomy, which focuses on the complexity of the task 
or mission. Essentially, the question is whether the adjective 
“automated” can refer to a system or should not basically 
refer to something tangible like a system, but always to a task 
or a process, in order to express that the task or process is 
done completely or partially by a technical system. It is also 

Figure 2: ALFUS Framework [6]

https://s.fhg.de/sf-blogbeitrag
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confusing that “automated” is defined as “technique, process, 
or system…”, since “automated” is a property, whereas “tech-
nique”, “process”, and “system” are not properties.  
 
The modes in Table 1 refer to the interaction with humans 
and are thus similar to the independence from humans in the 
ALFUS taxonomy (see x-axis in Figure 2). The complexity of the 
environment (z-axis in Figure 2) is not considered here. 

Challenges regarding the safety assurance of 
autonomous systems

However, the operating environment is directly related to the 
challenges regarding safety. As long as humans keep an eye 
on the operating environment, recognize hazardous situations, 
and use simple functions such as braking to avoid inacceptable 
risks, it is sufficient to identify the functions that are necessary 
for safety and to address critical defects such as brake failure. 
Accordingly, DIN EN ISO 12100 calls for the identification of 
necessary safety functions and refers to the functional safety 

standards for the correct implementation of safety functions. 
For the agricultural sector, ISO 25119 and ISO 13849 are 
particularly relevant here. If humans are no longer responsible 
for recognizing hazardous situations, there are essentially two 
options. Either the operating environment is designed in such a 
way that the hazardous situations can no longer occur, or the 
system is enabled to recognize and deal with hazardous situa-
tions. An example of avoiding hazardous situations is a fence 
and a gate that brings all machines directly to a standstill when 
it is opened. The example illustrates that simple measures are 
often not possible from an ecological or economic perspective. 
This is why the safety assurance of autonomous systems often 
leads to more complex safety functions that recognize hazard-
ous situations on their own and decide how best to control the 
risks in the current situation.    
 
The basic idea of this “dynamic risk management“ is applica-
ble to any hazardous situation and risk and is not limited to 
safety risks. In the following, we will consider collision risks, as 
they often make up a large part of the risks. Accordingly, there 

are dedicated standardization initiatives such as ISO 21815 
“Earth-moving machinery – Collision warning and avoidance”[8]. 
A key challenge in the implementation of dynamic risk man-
agement is the detection of objects and other aspects related 
to hazards and their risks, such as the detection of people in a 
stand of tall plants. One approach to improving awareness of 
risks in the environment is to share information. For example,  
a drone could fly ahead and share anything it detects from 
its bird’s eye view with autonomous agricultural machinery. 
Another approach is to use methods from the field of Artificial 
Intelligence, particularly Machine Learning methods. 

Collaborative dynamic risk management 

The application guide VDE-AR-E 2842-61 already takes into 
account the collaboration of systems for the realization of 
dynamic risk management. In part 3 “Solution Level”, the 
complete socio-technical working system is regarded and 
the development of a “runtime risk manager” (cf. 12.4) is 

considered. To enable cross-machine dynamic risk manage-
ment, the systems must exchange safety-relevant information. 
In doing so, the safety integrity of the provided information 
must match the required safety integrity. As explained in the 
application guide, this can be done using machine-readable 
assurance cases based on the OMG standard SACM [9]. With 
this approach, the information receiver can assess whether 
the measures taken to eliminate failures are sufficient for the 
intended purposes and whether context assumptions made are 
true. Digital Dependability Identities [10] provide one option 
for implementing this approach.   

 

Table 1: Distinguishing aid for different degrees of automomy [7]

Manual Non-Automated Partially Automated Semi-Autonomous Autonomous

Non-Automated

Automated

Manual Mode

Autonomous Mode



6

Sustainable agriculture through AI and autonomous systems – but keeping safety in mind!

The application guide also calls for dynamic risk management 
and other safety-relevant functionalities to be implement-
ed using approaches from the field of Artificial Intelligence. 
Machine Learning approaches and data-driven models are 
particularly relevant in this context.  
 
AI-based dynamic risk management

The output of data-driven models is inherently subject 
to uncertainties. According to the onion-skin model 
in [11], a distinction is made between three types of 
uncertainties: 

(1) Uncertainty due to inherent limitations of the learned 
model  
 
(2) Uncertainty due to limited input quality during appli-
cation (rain, etc.)  
 
(3) Uncertainty due to deviations between the modeled 
context and the application context  
 
 
 
 
 
 
 
 

Uncertainties are thus situation-specific. Dynamic risk manage-
ment takes these situation-specific uncertainties into account 
based on a component that estimates the uncertainties on a 
situation-specific basis during operation. Figure 4 illustrates this 
“Uncertainty Wrapper”.  
 

 
 
 
 
 
 
 
 

Figure 3 – The 3 levels of the VDE-AR-E 2842-61 “Development and Trustworthiness of Autonomous/Cognitive Systems” (modified) 

Figure 4: Uncertainty Wrapper (modified based on [11])
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Influencing factors regarding the input quality are captured by 
additional inputs such as lighting or camera angle. A quality 
model uses these inputs to determine uncertainties due to 
input quality. A scope compliance model determines the uncer-
tainties based on possible deviations between the modeled 
context and the application context. When it is clear that the 
system is not operating within its “Operational Design Domain”, 
the uncertainty is set to 100%. As the uncertainty is estimated, 
it is necessary to specify with which level of confidence the 
estimation should be made. The greater the confidence required 
to ensure that the uncertainty is not underestimated, the more 
pessimistic the estimate must be.  
 
Since typically not all failure modes are safety-critical, uncer-
tainty refers to the existence of a specific failure mode. Dynam-
ic risk management then deals with this failure probability in a 
situation-specific manner. One example of this management of 
uncertainties is described in [12]. Similar to the handling of fail-
ure probabilities for random hardware failures, threshold values 
are necessary here to determine what is sufficient. In this 
respect, the VDE-AR-E 2842-61 standard describes the idea of 
introducing a failure rate λAI, arguing that as more knowledge 
about AI technologies is gained, it might be feasible to define 

a real failure rate λAI associated with the AI element. Further-
more, it introduces a new failure class in addition to random 
hardware failures and systematic failures. As depicted in Figure 
5, these “uncertainty-related” failures are to be addressed with 
different approaches. 

Dynamic risk management is only a technical mechanism 
for assuring the safety of autonomous systems (Safety and 
Artificial Intelligence). Many other issues need to be considered 
as well. In order to deal with all issues uniformly and address 
safety (as well as other aspects of trustworthiness), VDE-AR-E 
2842-61 recommends the use of assurance cases. It is still an 
open research question how assurance cases for AI com-
ponents should be structured and developed, but there are 
already different approaches, like AMLAS [13] or the approach 
of Kläs et al. (2021) [14] from the project ExamAI [15]. Current-
ly, efforts are under way in the research project LOPAAS [16] 
to consolidate these approaches and make them available for 
standardization activities. This concerns, in particular, the stan-
dardization activities on cross-sector documents such as the 
technical report “ISO/IEC AWI TR 5469 Artificial intelligence 
— Functional safety and AI systems” [17] in the context of IEC 
61508 and the already mentioned VDE-AR-E 2842-61. 

FIgure 5: “Uncertainty-related” failures, VDE-AR-E 2842-61



8

Summary and Conclusion

Summary and Conclusion

In summary, autonomous systems offer great potential to 
achieve the sustainability goals in agriculture more effective-
ly and without compromise. The key to fully exploiting this 
potential of autonomous agricultural systems are innovative 
safety solutions. The underlying safety concepts are described in 
numerous publications and an application guide. It is difficult to 
predict how long it will take for these concepts to be estab-
lished in practice, as the application-specific implementation of 
the concepts involves pioneering work. 
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