
Does this remind you of your IT system?

“Historically grown …”

52 I 53

Software Renovation

INNOVATION instead of Maintenance

Successful software often has a longer lifespan than originally anticipated. Continuous exten-

sions lead to a state that practitioners like to call “historically grown”. This state is characterized by inconsistent user

experience, quality that suffers, rising maintenance costs, and a lack of innovative ability. Hence, sooner or later every

software company has to ask itself how to successfully renovate its own software and how profound this intervention must

or may be in order to continue achieving the business goals in the future. In order to set the right course for renovation,

the actual condition of the software must be analyzed thoroughly, particularly because experience has shown that this

condition deviates significantly from previous plans and documents. Renovating a software system successfully requires

taking an integrated look at the target state and at the migration path, careful familiarization of developers and users with

new concepts, and continual management of risks and goals. Software renovation thus concerns all those who want to

set standards with their software in the future as well as in the present.

Software is THE means by which innovation is created

today. Unfortunately, during the lifecycle of a software

system it becomes increasingly difficult to remain in-

novative and to respond to new requriements and

conditions. Software evolves continually and new

features are added, even if they do not fit into the

original design. So software ages noticeably and entails

numerous problems. For the users, the user experience

is no longer uniform on the one hand and no longer up

to date on the other hand. For the developers, the soft-

ware becomes ever harder to understand and changes

become more error-prone, resulting in more and more

time having to be spent on maintenance activities.

Consequently, less and less time is available for the

development of innovative features, and cutting-edge

innovation, in particular, becomes almost impossible.

Business software often lasts for several decades. The

evolution of technologies and the increasing perme-

ation of our professional and private lives by IT are

enormous during this time. Even today, a very large

number of applications in companies are still running

on mainframes and causing huge maintenance and op-

eration costs. Not surprisingly, there is a clear tendency

to port software to more cost-efficient and up-to-date

standard hardware, especially since the number of de-

velopers for old technologies keeps decreasing. Sooner

or later, all software companies are faced with the issue

of having to renovate “historically grown” software.

The challenges then range from unsuitable architecture

and code quality via outdated and extinct technologies

to requirements that are impossible to realize. The goal

is always to remain innovative and competitive.

”SOFTWARE DOES AGE!”
There is a rumor that doggedly persists: that software cannot age. This

may be true at the most for the code as such. As soon as technologies

evolve and expectations rise in the envrionment of a software system, it

feels as though software is indeed aging. It is mainly continuous evolu-

tion with many compromises that mostly leads to a situation at some

point in the software lifecycle where more and more effort must be

spent on maintenance than on innovation. Maintenance

Time

Innovation

„

Renovation is always
full of surprises.

“Software renovation is like renovating a
building that continues to be used, where
the residents must not be affected.”

Timo Rihtnieni
Manager Product Architecture

Tekla

“Successful software products become drivers of
the ›digital transformation‹ of companies. But they
will only remain successful if they allow continuous
innovation.”

Werner Weiss
CEO, Insiders Technologies

Build, Renovate, or just re-paint?

however, since the development team cannot maintain the old

system and develop a new system all at the same time.

Software renovation is often unavaidable and does entail risks.

Many decisions must be made about the future product and

the development path to be taken. These decisions range from

features and the interaction design via the future architecture

to the type of quality assurance. A comprehensive analysis of

the history and good planning of the renovation are therefore

indispensible prerequisites.

The renovation of a software system can be done very differ-

ently depending on the inital condition and the objectives.

Many companies first consider doing refactoring, which is

relatively cost-efficient and can be done locally. Unfortunately,

however, the improvement effects are rather limited because

global challenges cannot be solved in this way. Therefore, the

question often arises whether a system should be renovated,

including a re-alignment of its architecture, or whether it even

makes sense to develop a completely new system. In practice,

a complete new development is often not an option either,

“SOFTWARE IS NOT SOFT!”
One of the greatest accomplishments of software is that it can be changed without the need for physical

changes. This has led to the situation where all aspects in which changes must be made to a system are

nowadays implemented as much as possible via software. This is true for software in companies as well as for

software in automobiles.

Although software can basically be changed easily and in nearly every direction, in practice this is usually not

possible. Many changes extend across vast areas of the system, have large and unexpected side effects, and

make it very hard to get back to a state of high quality.

No RENOVation without ANALYzing the History

of implemented requirements and interaction designs is time-

consuming manual work, which requires an understanding of

the domain. The existing code basis is often large and hard to

comprehend. With the help of reverse engineering tools, the

code can be examined semi-automatically. Only by recording

the identified information in a re-documented architecture can

a level of abstraction be created on which the complexity of the

system to be renovated can be mastered.

It is important to realize that the analysis of the existing system

is an investment that is needed for the renovation to be success-

ful. This analysis must be comprehensive in nature and needs to

cover all aspects regarding usage, operation, and development

of the system in a methodological manner.

”After the renovation, our software must be able to do at least

the same things it is doing now!” is a sentence frequently heard

at the start of a renovation project. The reason for this is, on the

one hand, that this requirement is very easy to formulate and

that nobody can say exactly what the software really does. On

the other hand, many companies find it very easy to add new

features, but very hard to give up existing features. Experience

has shown, however, that any renovation should always be

accompanied by a consolidation of features, too.

A renovation project can almost never be built upon consistent

documentation of the software. In other words, an analysis must

not only investigate the current state of the software, but usu-

ally it must first reconstruct it. In this endeavor, the source code

is often the only reliable truth and source. The reconstruction

54 I 55

Software Renovation

“A well-conceived architecture that is implemented
as strictly as possible means that expenses for costly
repairs can be saved. The unavoidable, natural
degeneration is then tackled in the context of
value-adding renovation measures.”

Dr. Dirk Muthig
Head of Product and Systems Design

Lufthansa Systems

Complex renovations
require engineering tools.

”After the renovation is before the renovation!”

Even after the successful renovation of a software system, the world continues to revolve, new requirements appear, and new

technologies become available. Renovation should therefore not be seen as a one-off, but rather as a continuous activity that

can be designed according to the required level. However, the option of completely new development should not always be

excluded categorically either, since a renovation should remain a renovation, and its objective should not be to remodel an

existing system into a completely different one.

Anyone can build, but it takes specialists to renovate.

The challenge lies not only in designing a target state for the

software system, but also in the matching design of a migration

path. Renovation almost always takes place concurrently to the

evolution of the system, and these two activities must therefore

be coordinated in order to enable incremental renovation.

Renovation also includes a lot of change management. There

are not only changes to the software, but also impacts on the

users, the developers, the operators, and the sales department.

Changes are often perceived as negative, even if they constitute

improvements. These stakeholder groups must therefore be

involved early on and, depending on the software changes, also

need to get new qualifications or at least training. Constant

and goal-oriented migration is very demanding for quality as-

surance and especially requires automated tests for checking

the impact of changes.

The renovation of a software system is always a complex and

individual task, and there is no silver-bullet solution for it. This

is why Fraunhofer IESE relies on experience gained from more

than 100 renovation projects and provides a well-filled tool box

of methods and tools.

Fraunhofer IESE has already supported many software compa-

nies in the renovation of their software systems and is continu-

ing its research into further improving methods and tools for

software renovation.

Marcus Trapp, Matthias Naab

Many renovations of software systems fail although they would

be necessary. Whereas new developments are often quickly

excluded as an option for numerous reasons, renovation ap-

pears to be a feasible and controllable way to get a software

system back on the right track. But the result is often that the

priority given to such a project is too low, or that it is performed

half-heartedly. Then even the analysis sometimes appears to be

too great an obstacle.

Software renovation must be addressed as a strategic task and

requires the use of technical and methodological specialists.

Building on an analysis of the history of the software system,

the new target state is constructed. While new construction

can work with significantly fewer restrictions, renovation must

always take the existing software system into consideration. This

means constant trade-offs between the renovation costs and

the new benefit being created, which are hard to quantify.

From a holistic point of view, features and quality requirements

must be taken into account from the perspectives of usage,

operation, and development. Renovation must regard the

external design of a software system in the sense of interac-

tion design and visual design as closely linked with the internal

design in the sense of the software architecture. The decisions

about future features, interfaces, and interactions affect many

stakeholder groups and should not be made unilaterally (e.g.,

only by Sales). In particular, they should be underpinned by

facts, e.g. by measuring the actual usage.

Software Renovation

56 I 57

