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1 Objectives of this Study and Approach 

In the agricultural domain, practitioners as well as researchers work towards the 
development and validation of agricultural machinery with autonomous func-
tionality. There is currently a strong debate on what autonomous machinery 
might look like in the future, how the market will develop, and which factors will 
influence the development of autonomous machines in the agricultural market. 

This study contributes to this discussion by scouting the autonomous agricultural 
machinery market. The goal of this study is not to provide a complete market 
forecast, but to identify relevant factors that will influence the development, es-
timate their importance, understand the biggest uncertainties, and get a feeling 
of the state of the practice and the state of the art, as well as on how the experts 
see future developments. This study is relevant for practitioners (farmers, agricul-
tural machinery companies, smart farming players) as well as researchers in the 
field of agriculture and autonomous systems. It also serves as a starting point for 
further in-depth studies. 

In order to determine the results of this study, Fraunhofer IESE and the Kleffmann 
Group used a hybrid approach. On the one hand, comprehensive desk research 
was conducted. On the other hand, a series of interviews and workshops took 
place to elicit expert opinions. 

The goals of the desk research were: 

• Identification of technological and market influence factors  
(see chapter 2) 

• Gathering of information for market development  
(see chapter 4.1) 

This documentation includes an excerpt of the main findings of the desk re-
search results. 

The goals of the expert involvement, which included interviews and workshops, 
were: 

• Elicitation of expert opinions on the relevant influence factors 
(see chapter 2) 

• Elicitation of expert estimations on how the different levels of autonomy will 
develop in terms of market shares within the next 25 years  
(see chapter 4.2) 



Objectives of this Study and Approach 

Copyright © Fraunhofer IESE 2019 2 

For this purpose, a total of fifteen experts1 from various domains contributed to 
this study. We involved experts from 

• Classical agricultural machinery  
• IT solutions in Smart Farming 
• Researchers in Smart Farming and Autonomous Systems 
• Legal issues in the agricultural domain  
• Agricultural press 

The experts were assured strict anonymity and were asked to express their honest 
opinions and give unbiased estimations.  

Furthermore, Kleffmann Group conducted statistical modeling based on histori-
cal tractor sales data and FAO projections to quantify the market development 
until 2045. The quantitative modeling focuses on scouting how the markets 
could develop in the next 25 years based on the information obtained from the 
desk research and the expert assessments (see chapter 4). 

 
1 As can be seen from the number of involved experts, this study was not aimed at performing a representa-

tive survey with quantitative numbers, but rather at getting a qualitative estimate from renowned experts in 
the field. 
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2 Description of Main Influence Factors: Enablers and Inhibitors 

In order to enable autonomous systems and related use cases, there exist various 
factors that influence how autonomous processes in the agriculture sector will 
develop in the future. We distinguish these into (1) technical factors, such as 
development of sensor and actuation technology, and pattern recognition tech-
nology and (2) market factors, such as climate change, demographic change, 
and consolidation in the agricultural industry. All these factors will enable or in-
hibit the future development of autonomous systems in the agricultural market. 
In this section, we will discuss in detail how we see the development of these 
influence factors in this domain. At the end of this section, we will discuss con-
tradictory predictions from the state of the art and the interviewed experts and 
prioritize the influence factors as seen by the domain experts. 

 

Figure 1  The main factors influencing autonomous systems in agriculture. 
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2.1 Technology-related Influence Factors: Enablers and Inhibitors 

2.1.1 Sensor and Actuator Technology 

Autonomous machines rely on sensors and actuators to engage with their envi-
ronment. To determine the state of the machine as well as the state of the field 
or crops, autonomous machines use various sensors. Their input is processed in 
hardware and software to generate decisions and control actuators. Apart from 
regular challenges faced by autonomous vehicles (e.g., changing weather condi-
tions), autonomous agricultural vehicles face additional challenges such as mud 
and dirt blocking optical sensors or ground conditions being substantially worse 
than for autonomous cars. 

Sensor and actuator technology in the area of autonomous operations have seen 
significant developments in the past. Sensors, which are crucial for pattern recog-
nition and for providing enough information for decision-making, are expected 
to provide enough information about: i) the machine itself; ii) the intermediate 
field area of operation; and iii) overall field information. The Global Navigation 
Satellite System (GNSS) [1] is widely used in agriculture. There already exist ap-
proaches for utilization of aerial and ground-based platforms for crops scouting 
[2] [3]. They enable precision farming – detailed information for decision support, 
with minimal user intervention. In addition, they help to bridge the sensing gap 
as they use unmanned aerial vehicles (UAV) for monitoring the fields with a rel-
atively high level of detail, without having to rely on a machine driving in the 
field. This enables robust perception for on-field operation. In terms of concrete 
use cases, UAV enables weed detection, subsequent control measures in the 
field, detection of crop nitrogen status [4], and site-specific precision manage-
ment. 

Optical sensing provides a cost effective and rapid technique for the measure-
ment of biophysical and biochemical status of plants [5]. Such sensing: 

• is based on measurement of compounds such as chlorophyll 
• covers electromagnetic spectrum sensing techniques 
• provides remote (e.g., using airborne or satellite platforms) sensing techniques 

3D imaging of crops using, for example, LIDAR, stereo cameras, or time of flight 
(TOF) [5], can provide physical or structural information and attributes regarding 
plants: 

• High throughput screening 
• Plant phenotyping for breeding 
• Normalizing of measurements from other sensors 
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Most optical sensing mechanisms (e.g. hyperspectral analytics, spectroscopy [6]) 
can also be applied to machine vision [5] to cover visible and near-infrared 
ranges. Imaging has advantages over sensors: 

• Cameras deployed on remote platforms (UAV) can be used to capture canopy 
reflectance or thermal measurements with full field coverage at high spatial 
resolution 

• Ground-based machine vision sensors can better isolate soil influence on the 
signal by first segmenting leaves and plants within the image, 

• The image resolution offered by cameras can also be used to resolve structural 
information at the plant and leaf level that could be utilized for nitrogen man-
agement of the crop 

Below, we list some existing, but still futuristic, sensor and actuation techniques: 

1. Soli [7]: ubiquitous gesture sensing with millimeter wave radar. This tech-
nique, published in 2016, functions as an input device (Figure 2). It uses near-
field robust gesture recognition with sub-millimeter accuracy and can be used 
for very detailed gesture input. It is part of the next Pixel smartphone to be 
released in 2019. 

2. RESI [8] is a wearable computing sensor for interactive textiles. It is used for 
pressure sensing, e.g., in gloves for telepresence or, for in-seat interfaces. 

3. Tacttoo (Figure 3), a Thin and Feel-Through Tattoo for On-Skin Tactile Output 
[9], is an on-body interaction sensor. It is used for tactile display and imple-
mented with printed electronics and wearable computing. Its potential is in 
augmented reality on physical 3D models, alignment with real-world and vir-
tual tactile stimuli on physical objects, and augmented surfaces (paper, fab-
rics, machines, etc.). One of the applications is to control machines (e.g., di-
rectly by touching certain areas of the body without looking away from some-
thing). 

4. SwarmHaptics (Figure 4): Haptic Display with Swarm Robots [10] tries to an-
swer the question of: what can be done when we have a swarm of small 
miniature robots that can interact with humans and vice versa. This device can 
have possible applications in swarm robots to convey information, notify us-
ers, or let them interact with systems. It could be used for farmer training 
when working with future swarm robots. 

5. Feel the noise [11]: mid-air ultrasound haptics as a novel human-vehicle T in-
teraction paradigm. It represents an evaluation of typical touch interfaces vs 
mid-air gestures supported by haptic feedback through ultrasound. It could 
be useful for transferring haptic information from ground sensors to the 
cabin. 
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Figure 2  Illustration of the Soli approach [7]. 

 

Figure 3  Tacttoo - A thin and feel-through tattoo for on-skin tactile output [9]. 

 

Figure 4  SwarmHaptics: Haptic display with swarm robots [10]. 

Experts state that although such automation solutions have been around for 
some time now, they are not used everywhere. Machines today need more sen-
sors to achieve autonomy. However, the bigger problem is that machines today 
do not use the sensors that already exist. Such solutions are preconditions for 
autonomous agricultural processes and for the development of autonomous sys-
tems. Experts claim that there are still challenges in transforming environmental 
factors (e.g., weather, soil properties, and plant dieses) into a digital form. The 
agricultural environment is a multi-functional system. If one condition changes, 
the whole system can potentially change. Currently, farmers are still struggling 
with understanding existing sensor data. Today, the farmer's own opinion is still 
the most important input, and sensor inputs are considered as second or third 
opinion. 

Robotics opens up the potential for mass direct in-field phenotyping of crops 
under realistic farm conditions. Small, smart, electric robots provide an alterna-
tive solution to the existing solutions that require a lot of energy, by avoiding 
excessive compaction of the soil in the first place and performing micro-tillage 
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using on-board implements [12]. Current fruit harvesting robots can pick one 
strawberry every two seconds (= 30 per minute; humans pick 15 or 20 per mi-
nute) [4]. The prediction is that supervised groups of robots can replace straw-
berry pickers in around five years. In the future, UAV, in combination with sen-
sors, will enable continuous collection of field data [3] [4]. 

Experts claim that in the near future, sensors are still more likely to be seen as 
helping farmers to sharpen their view. In the future, there will be a great need 
not only for sensors that gather more information and for sensing types, but also 
for the interpretation of sensor data so that farmers can understand it (as if they 
were in the field). Most of the technologies today originate from other industries 
and are usually adapted for agriculture. In the future, this needs to change. 

2.1.2 Pattern Recognition 

The first challenge that autonomous agricultural processes need to solve is to 
identify objects in, and properties related to, the field (based on their patterns). 
The primary pattern of interest are crops, where the main task of pattern recog-
nition lies in differentiating the crops from their surroundings (e.g., recognizing 
corn and separating it from weeds). Other patterns directly related to autono-
mous agriculture are patterns related to pests and obstacles in the field. Patterns 
with secondary significance to be recognized are related to field properties (e.g., 
nutrition value and moisture of certain areas), environment (e.g., weather condi-
tions, rain prediction), and crop properties (e.g., ripeness of crops, healthiness of 
crops). 

Regarding this track, there exist several studies. Kiani and Jafari [13] performed 
a study on crop detection. They showed that using only 180 images (for neural 
network training [13]) consisting of corn plants and four species of common 
weeds under normal conditions in the field, they were able to distinguish corn 
plants with an accuracy of 100 % while at most 4 % of the weeds were incor-
rectly classified as corn. The high accuracy of this method is due to the significant 
difference between corn and weeds during the critical period of weeding in the 
region. Other examples of distinguishing crops from their surroundings include 
detection of broad-leaved weeds [14], shape features of the radish plant and 
weeds [15] (the success rate of recognition was 92 % for radish and 98 % for 
weeds), and sugar beet weed segmentation [16] (with a classification success 
rate of up to 96 %). Approaches existing today for obstacle detection in auton-
omous driving use obstacle-pattern-recognition algorithms in combination with 
simulated virtual sensor networks [17] [18]. Under regular weather conditions 
and under the assumption that the objects of interest are significantly different 
from their surroundings, these pattern recognition algorithms perform well, with 
high accuracy [13]. When it comes to the identification of properties of field and 
crops, pattern recognition can contribute to solving problems such as water 
shortage or pests. A study by C. Bauckhage and K. Kersting [19] focuses on these 
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problems. They presented a case study that surveys existing developments in 
these areas and they concluded that methods from the field of artificial intelli-
gence (AI) (e.g., pattern recognition) can contribute to solving problems due to 
water shortage (e.g., dry stress) or pests by detecting such regions and infected 
plants in real-time. 

The experts also agree with scientific conclusions that the differentiation be-
tween crops and their surrounding is already possible. They point out two ap-
proaches for this: i) camera technology that recognizes the row structure, and 
identifies the patterns; and ii) camera technology that relies on self-learning from 
pictures, where an AI recognizes the structure from pictures. 

At this point in development, artificial intelligence based on supervised learning 
remains the most significant technology for pattern recognition. There are no 
significant research efforts to replace artificial intelligence as a key technology 
for pattern recognition. Ongoing research focuses on understanding supervised 
learning and making it faster and more reliable, while trying to quantify its pre-
cision. There are some efforts, in the automotive industry to combine artificial 
intelligence with classical algorithms in order to provide certain safety guaran-
tees. 

Experts point out a challenge in pattern recognition under changing environmen-
tal conditions, which affects the precision of pattern recognition. Humans cur-
rently have the advantage of adaptability (e.g., to the conditions of the environ-
ment) over machine systems, which are still rigid. Furthermore, machines must 
have appropriate sensors to perform pattern recognition for any type of object 
or phenomenon. These challenges are expected to be resolved in the future. 

2.1.3 Decision Making Process 

Autonomous vehicles constantly try to answer three questions [1]: i) Where am 
I? ii) Where am I going? and iii) How do I get there? The decision-making process 
that answers these questions considers the execution of perception and action 
functionalities [1] (Figure 5). Perception is closely associated with safety proper-
ties, and the whole process is under the influence of external factors (e.g., mis-
sion description) as well as the environment and the platform of the robot.  

When it comes to making decisions, the process is heavily dependent on the 
operation type in autonomous vehicles and on the type of the autonomous sys-
tem itself. Some decisions in agriculture have been automated for a long time. 
For example, transmission technologies and advanced steering control systems 
(e.g., drive-by-wire) [20] are standard in modern agriculture. Tractor guidance 
and steering control technologies have been in commercial use, in different 
stages of autonomy, for two decades [21]. In addition, a number of systems have 
been developed that automatically optimize machine performance. However, 
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making decisions about routing and collision avoidance in unstructured, dy-
namic, open-ended and weather influenced environments [1] remains a chal-
lenge [21]. Continuously changing conditions and variability in environments [22] 
contribute to the complexity of the issue. Some researchers claim that the main 
reasons for this is a lack of an appropriate and commonly used open software 
platform for precision agriculture, which would decrease development time and 
enable reuse of existing work (localization, mapping, path planning) [1]. Alt-
hough many platforms and toolkits that support decision-making processes al-
ready exist (e.g., CARMEN Robot Navigation Toolkit [23], CLARAty (Coupled 
Layer Architecture for Robotic Autonomy) [24], MRDS (Microsoft Robotics Devel-
oper Studio) [25], ROS (Robot Operating System) [26], Orca and Orocos [27] [28], 
Agroamara [29], Mobotware [30], FroboMind [1]), there is still a need for a uni-
fied platforms that will bring researchers and practitioners from different fields 
closer. 

Future technology is expected to benefit from pattern recognition using artificial 
intelligence (e.g., Deep Learning to interpret all the data from a color camera fast 
[4]). Cloud-based farm management platforms already exist to some extent. In 
the future [20] [31], they will aim to integrate data from multiple sensors, vehi-
cles, weather, and other sources across different manufacturers. Also, by includ-
ing decision support systems, they will be able to provide a more versatile data 
infrastructure in the future.  

Experts and researchers agree that systems of multiple robots are expected and 
needed in the future [31] (e.g., machine-to-machine communication, telematics, 
infield communication, data infrastructure for more sophisticated autonomy and 
decision support). More robust, reliable information-acquisition systems, includ-
ing sensor-fusion algorithms and data analysis, should be suited to the dynamic 
conditions of unstructured agricultural environments [32]. 

 

Figure 5  Decomposition of an Artificial Intelligence agent [1]. (left) The agent perceives its environment through sensors 
and acts through actuators. The action taken by the agent in response to any percept sequence is defined by 
an agent function. (right) Decomposition of (left). 
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2.1.4 Complexity of Autonomous Actions 

The desired goal of autonomous operations is to work in unstructured agricul-
tural environments with the same, and even better, quality of work achieved by 
current methods and means [22]. Complex autonomous actions include actions 
in the field (e.g. yield monitoring, yield mapping, variable rate application, which 
are already automated [2] [33]), guidance technologies [21], path planning and 
route optimization, and functional control aspects [21]. 

There is a number of sensing products that support crop management (i.e., pro-
cess monitoring) [31]. Examples of other existing agricultural operations include: 
auto-steering, auto-seeding, selective weed picking [34] [35], yield estimation 
[36], irrigation [37], and harvesting [38]. Scientific prototypes of many individual 
technology solutions exist [22] (e.g., information-acquisition systems, sensor fu-
sion algorithms, data analysis). However, they represent only pieces in a complex 
challenge. Fully autonomous solutions for the previously mentioned complex ac-
tions are not yet available commercially. Requirements for future autonomous 
operations include [22]: cost-effective, safe, reliable in terms of human safety, 
preservation of the environment, the crop, and the machinery. Factors limiting 
commercialization of existing solutions are: poor detection performance [32], in-
appropriate decision-making [32], low action success rate [32], and lack of eco-
nomic justification. It is expected that economic justification will change as tech-
nologies offering such solutions become progressively more affordable [20]. In 
addition, increased production is currently required to make Automated Robotic 
Systems (ARS) economically justifiable [20]. 

Experts agree that autonomy in agricultural operations requires significant im-
provements. In particular, the data infrastructure must be further developed to 
support complex autonomous actions. Innovative technology is expected to be 
increasingly developed for use in the machines (e.g., tractor), but also in the im-
plements. According to the current state of the practice, experts point out that 
the intelligence on the tractor is rather being developed by independent compa-
nies and not necessarily by the manufacturers themselves. The current state of 
development is 80 % old machines and 20 % new machines. The new models 
are more likely to be found within the scope of machinery rings, contractors, and 
large farms. The driver for the current state of development is the consolidation 
of agriculture in Europe. 

In order to enable the execution of complex actions in an autonomous manner, 
researchers agree that system sizes should be reduced while improving the inte-
gration of all parts and components that solve individual, smaller challenges [22]. 
The further integration of all such sub-systems is expected to enable sustainable 
performance and fully autonomous complex operations [32]. 
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According to experts, the first phase of development of autonomous solutions 
for complex actions will consider the involvement of farmers in the form of driver-
led and assisted driver-led operations. In the near future, farming operators are 
expected to still occupy the vehicle. In the second stage of autonomy develop-
ment, it is assumed that, for performing complex actions, farming operators will 
be able to leave the vehicle on the field and take over the role of an online op-
erator. In this stage, a farmer can will be able to look after two to three machines 
that driving alongside each other (master-slave mode). In the final stage of au-
tonomy, which experts believe to be inevitable, farmers will still play a part in the 
process, but mainly for monitoring tasks. It is expected that, in this phase, ma-
chines will be able to perform actions autonomously and potentially decide when 
and what actions to take (e.g., when to go out, which crop to protect). 

2.1.5 Standards 

Autonomous driving is a safety-critical operation. In a broader context, besides 
safety, the scope of autonomous driving also includes remote surveillance and 
control, with the emphasis on machine-to-machine communication and human-
to-machine communication. Because standards enable interoperability among 
different machines and implements, it is expected that they will prescribe defini-
tions for the reliability and security of communication for this domain.  

The most well-known standardization efforts are the following: 

• Machine-to-Machine Communications: The communications standard [20] 
ISOBUS is for standardizing farm equipment that creates and handles farm 
data. The ISO standard 11783 defines serial control and communications data 
networks for tractors and agricultural machinery. In order to achieve a large 
degree of autonomy, data produced by agricultural vehicles must be pro-
cessed and reasoning needs to be performed. Such data might first be sent 
to the cloud infrastructure of the respective manufacturer before it is then 
shared between different clouds through standardized interfaces, semantics 
and data structures.  

• SAE J3016: Taxonomy and Definitions for Terms Related to Automate Driving 
[39] defines terminology around automated driving such as automation levels. 

• UL4600 – Standard for Safety for The Evaluation of Autonomous Products 
[40] provides a set of normative requirements on how to build a proper safety 
case for autonomous systems. The scope of this standard is mostly on auton-
omous driving with a focus on what things need to be assured. The standard 
is scheduled to be released in 2020. 

• SOTIF – Safety of the Intended Functionality [41] deals with assuring the ab-
sence of unreasonable risk due to hazards resulting from functional insuffi-
ciencies of the intended functionality or from reasonably foreseeable misuse 
by persons. Practically, this refers to creating sufficient situational awareness 
and is targeted at finding problems induced by the incapability of sensors and 
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sensor fusion to properly determine relevant properties of the environment. 
SOTIF is a very important standard for complex decision logic relying on com-
plex situational awareness. As of its 2019 release, it deals only with automa-
tion levels L1 and L2 (according to SAE J3016 automation scale) explicitly, but 
the working group is currently extending the standard up to level 5 (highest 
level of driving automation). 

Experts mentioned homologation2 of agricultural machinery. There are no uni-
form standards, especially in the field of implements, and accordingly there are 
many different requirements in the individual countries that manufacturers have 
to fulfil. Experts believe that this would lead to similar challenges in robotics and 
consequently to high costs. 

There will be a great need in the future for the standardization of terms, system-
performance measures and methodologies for comparing robot performance 
and technical progress [32]. Open data standards for communication between 
the vehicle (implement) and management software are urgently needed, and it 
is expected that most, if not all, manufactures will subscribe to these standards 
[20]. 

Experts particularly emphasize the role of security in the working process of au-
tonomous vehicles and see it as a great obstacle to further development in this 
area. 

2.1.6 Laws and Legislation 

Vehicles can cause damage to property and even lead to the loss of human lives. 
Before adopting autonomous operations, it is primarily necessary to define laws 
and legislation regarding liability of autonomous machines and their manufac-
turers. Besides liability laws being enacted, insurance companies must also offer 
appropriate packages. As a side effect, autonomous systems inheritably produce 
a significant amount of data and perform actions that are subject to various ag-
ricultural regulations (e.g., CO2 emissions, usage of fertilizers). Currently, farmers 
are worried about how this data will be used. 

Researchers mostly discuss the existing challenges in the area of autonomous 
operations in terms of ethical decisions made by the artificial intelligence [43], 
responsibility for hazards that could occur [44], and ownership of data (closely 
related to privacy) [45] [46]. They notice that some markets are far ahead of 
others in the discussion on autonomy.  

 
2 “Homologation is the process of certifying or approving a product to indicate that it meets regulatory 

standards and specifications, such as safety and technical requirements” [42]. 
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Experts emphasize that the current state of legislation related to the agricultural 
machinery market is complex and in need of improvements. This is especially a 
challenge in the field of the innovations that autonomous farm systems intro-
duce. Traffic laws that should be addressed and updated in this regard are related 
to: i) road traffic, ii) liability and iii) criminal justice. When it comes to laws re-
garding operations in the field, liability law cases should be established related 
to field damage, game damage, and damage to the associated equipment and 
property. Today, insurance companies are only willing to cover personal risks. In 
order to approve autonomous systems on the road, it is necessary that insurance 
companies also cover the system and the consequences of the operations of such 
systems. Accordingly, the experts argued to distinguish between on- and off-
road operations and to separate these two areas in order to create corresponding 
legal regulation. Experts also point out that the approach to such laws varies 
greatly from region to region. For example, North American laws are very liberal 
from the product approval point of view and therefore autonomous systems have 
a higher chance of being used there. In China, the government can enforce cer-
tain laws and procedures and put them in motion in practice much faster than 
in the rest of the world. Experts also agree that the EU is stagnating in this field, 
although they see the potential that, in the case of a change of policies, the EU 
could play a pioneering role in defining a legal framework. The European Union 
has well-defined laws about agriculture (e.g., fertilizers, pests, pesticides), which 
can be a basis for the further development of laws. Africa and South America, 
on the other hand, are difficult to assess.  

Finally, there is a concern about the data produced by autonomous systems. The 
question is who owns the data of such machines. This challenge remains un-
solved today. 

Both experts and researchers agree that some markets are far ahead of others in 
the in the discussion of autonomy on the legal level. For example, Australia is 
already quite autonomous. USA and Australia are therefore predicted to become 
the trailblazers (2035). It is supposed that by 2045, autonomy will be present in 
Asia and Africa as well. 

Experts point out that it is very hard to predict how the legal situation will develop 
in the future (e.g., in the next 20 years). One of the reasons for this difficulty to 
predict future development is the number of stakeholders (e.g., software devel-
opers, machine manufacturers, field owners). They agree that no regulations (or 
their lack) will be able to stop innovations (although this could slow down their 
acceptance). The only question is where innovations will emerge first. Some ex-
perts believe that limitations should be imposed by road traffic regulations, which 
could solve most of the problems. 
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2.1.7 Trust and Acceptance of Autonomous Technology 

There exist strong social relationships between farmers and their close associates 
[47]. Therefore, it is important to reason on whether AI can replace the existing 
social relationships: i) Does the farmer spend as much time with the AI asking 
questions, being skeptical, wondering about this and that? ii) Does the farmer 
trust the AI with their fears and longings? iii) Does the AI care about the farmer 
as a person? If AIs do not care and farmers do not really trust them, then there 
is a great risk when replacing humans with artificial systems. 

Operators in the area of agricultural machinery require trustworthy systems. Trust 
that a system inspires is characterized by [47]: i) competency (skills, reliability, and 
experience) and ii) Integrity (motives, honesty, and character). If an autonomous 
system lacks competencies, it might still have the high integrity. However, if it 
starts behaving mysteriously (e.g., if the collected data is unavailable), it loses its 
integrity. Such behavior might result from machine learning algorithms that di-
rect the robot to act in ways confounding to the human operator (the human 
might wonder why this robot is acting in this way) [47]. According to a study by 
Devitt (2018), reasons for not adopting driverless tractors, agricultural crop pick-
ing robots, and UAV’s are: i) inability to generate trust; ii) loss of farming 
knowledge; and iii) reduced social cognition [47]. The higher the autonomy, the 
less a human needs to operate. The less a human needs to operate, the less 
aware they are of on-farm activities, which in turn may affect strategic decision-
making about the enterprise [47]. A loss of farming knowledge [47] occurs as 
machines take over a range of operations. A high level of automation brings 
cognitive risks regarding enterprise perception, knowledge and understanding. 
The main challenge for an autonomous system is therefore to gather information 
at the same level of granularity that farmers can gather while driving their tractor 
on the field. This includes sight, sound, smell proprioception, and touch. The 
question here is also whether there is a need for farmers to go to the field. If yes, 
then they will need a vehicle to take them there. If farmers do not directly per-
ceive their own farm and create sophisticated knowledge representations, they 
may struggle to imagine or plan possible future actions on their farm in a mean-
ingful way. Sometimes data collection does not resonate with farmers and they 
can plan better if they go across the field. 

Experts claim that acceptance of technology depends in large part on the aware-
ness of people about the technology. While in some areas (e.g., North America) 
a technology may be widely accepted, in other areas (e.g., South-East Asia) farm-
ers might feel reluctant to accept the new technology as it disturbs their tradi-
tional way of doing agriculture. Today, there is great social pressure to automate 
certain tasks that humans do not want to perform anymore. 
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Figure 6  Framework of factors affecting safety and performance in human-machine systems [47]. 

The phases of autonomy being adopted agriculture [47] mainly include: i) user 
adoption, where the barriers are the cost of technology and the lack of belief 
that the technology will be an overall advantage; ii) initial use, where the barriers 
are the calibration to individual farm parameters (e.g., GPS coordinates, soil, wa-
ter, crop type, seed type), personalization to individual farmer needs and prefer-
ences (e.g., speed, accuracy, level of detail), and learning (e.g. experimentation, 
workshops, product manuals, personal assistance); and iii) post-adoptive use, 
with the main barriers being the failure of the technology to adapt to changing 
user needs and poor support services to help users use the product or maintain 
the technology when it needs servicing or repairs. 

Experts predict that in the future, we will see the changes in the farmer’s role in 
agriculture, who will gradually shift from being an operator to being a supervisor 
(e.g., to doing only monitoring jobs). It is expected that integration of human 
operators into the system control loop for increased system performance and 
reliability [22] will take place first. This will be followed by efforts to move the 
farmer farther and farther away from the field. During this process, the 
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technology will have to ensure that the farmer gets reliable information from the 
field, and the autonomous actions have to be good enough that the farmer will 
trust them. 

2.2 Market-related Influencing Factors: Enablers and Inhibitors 

The market for autonomous agricultural machinery is driven partly by technolog-
ical progress (as described so far) and partly by the demand for such machines. 
While the technological enablers mentioned above primarily determine the avail-
ability of such autonomous machines, the demand, generated by farmers, is 
driven by a range of structural, social, political or economic influences all of which 
have a potential impact on demand [48]. If we look outside of the realm of agri-
culture, we find numerous examples of where “superior” technologies that were 
“ahead of their time” (including, for example, both Betamax and Palm) failed to 
succeed commercially as a result of “market related factors despite being tech-
nologically advanced” [49]. The following section outlines what can be consid-
ered as the most influential market related factors impacting the market for au-
tonomous agricultural machinery. 

2.2.1 Change of Climate and Natural Conditions 

Climate change can refer to changes in weather, climate variability, or indeed 
actual climate change itself. These three phenomena work on different time 
scales, and while all have the potential to affect the market for autonomous ag-
ricultural machinery out to 2045, climate variability and climate change will be 
the more significant ones the years to come. Weather includes current atmos-
pheric conditions such as rainfall, temperature, and wind speed, which occur at 
a particular place and over periods of hours, days, or months. Climate variability 
occurs over longer time spans, like years or decades. This includes weather phe-
nomena such as El Niño or La Nina, which on a regular basis cause a reversal of 
wind patterns across the Pacific, drought in Australasia, and unseasonal heavy 
rains in South America. Climate is the average weather pattern for a particular 
place over several decades. 

At first glance, the direct impact of climate change on the market for autono-
mous agricultural machinery could be considered to be only of minor importance. 
However, combining both its direct and indirect impact, climate change has the 
potential to alter agricultural production conditions in some parts of the world. 
Unfortunately, however, there is no universally accepted outcome of the impact 
of climate change out to 2045, with many projections & models providing dif-
ferent outcomes [50].  
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If, however, we were to assume even a modest global warming of +1 °C over 
the next 25 years this would lead to (among other weather phenomena): 

1. Precipitation volatility leading to floods (as in India in 2019 and the US in 
2019) and droughts (as in Australia since 2017) 

2. A decrease in available arable land as a result of soil erosion, as for instance 
in the US [51]  

3. A noticeable quality impact (and subsequent nutritional impact) as well as 
quantity (yield) reduction in most parts of the world [52] 

Climate change will affect every aspect of food production with regional differ-
ences becoming very noticeable. In its latest assessment, the IPCC (Intergovern-
mental Panel on Climate Change) stated with high confidence that in low-lati-
tude countries, crop production will be ‘consistently and negatively affected by 
climate change’. In northern latitudes, the impact on production is more uncer-
tain; there may be positive or negative consequences.  

While the direct impact of climate changes on the developmental progress of 
autonomous agricultural machinery is in very general terms incremental and gen-
erally predictable (dependent upon actual changes), the indirect impact is far 
more difficult to quantify. Although various indirect impacts could be discussed, 
one of the chief ones is the requirement under the Paris Agreement on Climate 
Change (UNFCCC, 2015) to reduce greenhouse gas (GHG) emissions. Over the 
past 50 years, GHG emissions resulting from agriculture, forestry and other land 
use have nearly doubled, with projections suggesting a further increase by 2050 
[53]. The agricultural sector produces an estimated 21 % of total global GHG 
emissions and as such is a key target area for reduction. A further negative flip-
side is that agriculture is estimated to be the proximate driver for around 80 % 
of deforestation worldwide. Forests are one of the natural carbon sequesters, so 
meaning they reduce global GHG levels, and deforestation then aggravates the 
problem. These two negative consequences of GHG emissions are indirect as-
pects of agriculture, often more associated with modern intensive farming meth-
ods rather than extensive farming, which will potentially impact the market for 
autonomous agricultural machinery. 

2.2.2 Consolidation in the AG Industry and Change of Food Production Systems 

Farms are becoming fewer in number and larger in size. In the EU for instance, 
the average annual rate of decline between 2005 and 2013 stood at 2 % for the 
EU-27, with greater losses in the countries that joined the EU in 2004 and 2007 
(EU-12: -2.7 % per year) than in the older Member States (EU-15: -0.9 % per 
year) [54]. In the US, the consolidation of farms is even more marked, with the 
USDA Census of Agriculture results showing a drop in the number of farms from 
2.13 m to 2.03 million over the period of 2011 to 2018 and average farm size 
increasing from 429 acres to 443 m acres [55]. 
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Figure 7  Number of Farms and Average Farm Size – United States: 2011-2018 [55]. 

Broadly speaking, this pattern is replicated around the globe, although much 
slower in developing nations in Asia and Africa than in the developed regions of 
the world. The drive to larger farms is essentially aimed at productivity improve-
ment and “economies of scale”, which is proven to be the case, for example, in 
the US; but there is much debate among productivity economists for example in 
China [56]. In the conventional development paradigm, farmers who remain in 
the sector change their practices, shifting from multiple crops to monoculture, 
and moving away from staples toward higher-value foods and cash crops. Risks 
that were previously pervasive are managed better, and the impact of shocks is 
covered by insurance. Inputs previously produced on-farm and most food items 
for the farmer’s family are increasingly bought through markets. Gradually, farm-
ers are able to integrate into commercial food systems, earning higher incomes 
and employing better technologies. Clear modifications that form part of larger 
farm practices include: 

1. Change in land use, e.g., a shift from non-arable cropping towards arable and 
vice-versa, in part dependent on policy 

2. Continual trend towards non-till and low-till agriculture as in the US 
3. Increase of agricultural productivity due to adoption of new technologies 

The speed and patterns of consolidation differ across regions and, broadly speak-
ing, the point on the “consolidation road” where each region is currently at dif-
fers significantly, as indicated in Figure 8. 
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Figure 8  Distribution of agricultural area according to farm size in different countries. Based on latest available data 
provided by FAO [57], EUROSTAT [58] and various national agricultural censuses. 

The final impact of larger rather than small farms on the market for autonomous 
agricultural machinery depends upon many factors. Not the least of these is the 
point on the “consolidation road” where any given farm is; as a driver going 
forward, its impact is very likely to be significant. Moreover, the differences in 
farm structure are expected to be one reason for the emergence of regional dif-
ferences with respect to the uptake of autonomous agricultural systems. 

2.2.3 Farm Productivity and Profitability 

To meet demand, by 2050 agriculture is expected to need to produce almost 
50 % more food, feed, and biofuel than it did in 2012. This FAO estimate takes 
into account recent United Nations projections indicating that the world’s popu-
lation would reach 9.73 billion in 2050 [59]. Given that yield increases are slow-
ing and yields of major crops vary substantially across regions, increased farm 
productivity and profitability are one key route to meeting this demand. Farm 
profitability (and productivity in turn) is, closely linked to commodity prices [60]. 
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Figure 9  Development of nominal and deflated price indices [61]. 

Generally speaking, commodity prices have been particularly volatile over the 
past decade, with a number of significant peaks and troughs characterizing price 
trends for the basket of core food commodities that is tracked by the UN’s Food 
and Agriculture Organization (FAO). After an extended period in which real food 
prices mostly exhibited a downward trend, prices rose sharply in 2006/07 and 
again in 2010/11. During the financial crisis in 2008/09, in contrast, food prices 
dropped dramatically at the same time as output slowed in several major econ-
omies. The trend since 2016 has also been one of decline both in nominal terms 
and in real (deflated price index) terms, driven largely by the impact of growing 
protectionism in agricultural trade and in particular between China and the USA. 

Looking forward, the most recent joint report by FAO and the Organization for 
Economic Co-operation and Development (OECD) provides a somewhat mixed 
picture of medium-term developments in real food commodity prices to 2025. 
While the prices of meat and cereals, with the exception of coarse grains, are 
projected to decline in real terms, prices for dairy products will tend to rise over 
the next ten years. While prices are generally projected to remain structurally 
higher than in the decade before the 2007–2008 price spike, such medium-term 
developments are ‘not inconsistent with a very long-term trend for declining real 
prices’ [62]. 

With a slowdown of economies and no immediate long-term solution to policies 
increasing protectionism in agricultural trade, all indications are for a long-term 
trend of price decline. Offsetting this to some extent will be a modest increase in 
direct subsidies and government support driven in some countries by a need to 
mitigate protectionism policies as well an increase in “greening policies”, where 
farmers are paid for practices that benefit the environment rather than for the 
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production of commodities. Other factors that might also slow down the ex-
pected decline of commodity prices in the long-term are climate change and 
limited production resources. Both factors can jeopardize the increase in agricul-
tural yield that is necessary to meet the increasing global food demand. If the 
supply of food cannot keep pace with the demand, this would result in upward 
sloping commodity prices. In general, we expect that there will be a positive cor-
relation between farm profitability and the adoption of autonomous machines 
by farmers. This means increasing commodity prices and farm profits should fos-
ter the adoption of autonomous machines, while decreasing farm profitability 
would have the reverse effect. 

2.2.4 Demographic and Social Change 

The demands placed on agriculture to feed a growing population are well docu-
mented [59]. Population dynamics and social change will radically change de-
mographics over the coming decades and out to and beyond 2045. Projected 
growth of the world’s population is expected to be concentrated in Africa and 
South Asia and in urban environments. By mid-century, two-thirds of the global 
population will live in urban areas. Low-income countries will see large increases 
in the 15-24 years age group. The population will continue to grow in South Asia 
until at least 2045, and in sub-Saharan Africa until at least the end of the century. 
Cumulatively, these increments translate into a world population of 9.73 billion 
by 2050 and 11.2 billion by 2100. Significantly, by the year 2100, Asia and Africa 
are expected be home to a combined population of close to 82 % of the world’s 
projected 11.2 billion population. 

In these projections demographics out to 2045 are considered as a key driver of 
changes mainly for the inevitable demand for food and agricultural products but 
also in population dynamics, which includes diversity in regional trends, structure 
by age groups, and location, i.e., rural vs. urban. With regard to this analysis, 
something that will probably be more significant than population growth per se 
(which, roughly speaking, will lead to a 29 % increase in food demand), will be 
the increasing impact of urbanization. For decades, the world’s population was 
predominantly rural. Even as late as the 1980’s, more than 60 percent of the 
global population lived in rural areas. Since then, however, the urban-rural bal-
ance has changed dramatically and today it is estimated that only 45 % or so 
can be considered as rural. According to the United Nations, by 2050 this could 
be as low as 32 % [63]. Significantly, this predicted decline in rural population 
by 2050 is greater, by some 200 million, than the overall population increase; 
effectively leading to net decline in rural populations. 
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Figure 10  Predicted change in global urban vs. global rural populations out to 2050 [59]. 

Shrinking rural populations will further worsen the problem of agricultural labor 
supply that already exists in many countries and regions across the world. The 
declining attractiveness of being a farmer or working on a farm is expected to 
push the demand for labor-saving technologies such as autonomous machines. 
However, an increasing urbanization does not only foster the adoption of labor-
saving technologies in agriculture but it also has an impact on food consumption 
patterns. Higher urban income tends to increase demand for processed foods, 
as well as animal-source food, fruits and vegetables, as part of a broad dietary 
transition [64] [65].  

The final impact of demographics on the development of autonomous agricul-
tural machinery is multi-dimensional, but most indicators show a need for con-
tinual uptake of rural labor-saving technologies. 

2.2.5 Political and Economic Framework 

The world economy grew by 2.6 % a year, almost doubling in size, between 
1990 and 2014. During that period, global economic growth was driven mainly 
by low- and middle-income countries [59]. This trend of global growth being 
driven by emerging countries is expected to continue out to 2045, when, for 
example, the rise in global Gross Domestic Product (GDP) will outstrip that of the 
rise in OECD member countries. 



Description of Main Influence Factors: Enablers and Inhibitors 

Copyright © Fraunhofer IESE 2019 23 

 

Figure 11 Real GDP long-term forecast (Global vs. OECD) 2015-2050 in million USD [62]. 

Furthermore, Price-Waterhouse-Coopers (PWC) predicts substantial and, from an 
agricultural point of view, important changes in the order of global economies 
[66]: 

• The world economy could more than double in size by 2050 due to continued 
technology-driven productivity improvements 

• Emerging markets (E7) could, on average, grow around twice as fast as ad-
vanced economies (G7)  

• As a result, six of the seven largest economies in the world are projected to 
be emerging economies in 2050 – led by China (1st), India (2nd), and Indo-
nesia (4th). 

• The US could be down to third place in the global GDP rankings, while the 
EU27’s share of world GDP could fall below 10 % by 2050. 

• The UK could be down to 10th place by 2050, France out of the top 10, and 
Italy out of the top 20 as they are overtaken by faster growing emerging 
economies like Mexico, Turkey, and Vietnam, respectively. 

The link between emerging markets, economic growth, and significantly higher 
demands for agricultural products is well documented. The economic growth of 
emerging markets in Asia, the Middle East, and Latin America leads to significant 
changes in diet [67]. People adopt a western lifestyle, which is associated with 
higher consumption of meat and dairy products. As a consequence, rising feed 
requirements put pressure on the agricultural markets, as do expanding biofuel 
requirements from arable crops. In effect, as the world grows richer, it grows 
hungrier. 
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The political framework, however, has the ability to offset this. One measure to 
meet increased demand for agricultural products are clearly global trade flows. 
Since 2000, trade in food products has grown strongly – more strongly than in 
the preceding decade at close to 8 % in real terms annually between 2001 and 
2014 compared to just 2 % between 1990 and 2000. Apart from demand, one 
clear reason for the increased trade flows has been the global response to a more 
rules-based trading environment and, until recently, falling tariffs. Since 2017, 
however, increased protectionism policies in the US, China, Russia, and the EU 
as well as in other countries have reduced agricultural trade flows by imposing 
various layers of additional tariffs – the so-called “Trade Wars”. While extremely 
damaging, such protectionism policies tend to be politically driven and on the 
whole are short-term (i.e., measured in years rather than decades) in nature. 

The impact of any political and economic framework on the development of au-
tonomous agricultural machinery should by all accounts be a positive one. Short-
term political events will cause “bumps in the road”, but the economy, which 
will be driven by what are essentially agricultural economies out to 2045, should 
be able to smooth out those negative influences. 

2.2.6 Regulatory vs. Pest/Disease Pressure 

Regulatory vs. pest/disease pressure is the final one of the most influential mar-
ket-related factors impacting the market for autonomous agricultural machinery. 
As a driver, it is a mix of positive and negative elements and takes into account 
many of the “emerging disruptive technologies” which themselves are often 
driven by regulatory pressure or indeed unmet needs of the grower in relation to 
pest solutions. 

It is well documented that most regulatory authorities around the world have a 
less than positive view on intensive agriculture and (at least publicly) have a more 
positive view on extensive and organic agriculture. Examples are the “Ecophyto 
Plan” in France or the “Zero Growth Policy” in China – both of which are de-
signed to reduce the amount of pesticides used. The same reductions for the 
amount of fertilizers used is also a policy within the EU’s 2018 legislative pro-
posals to introduce a Farm Sustainability Tool for nutrients (including organic 
fertilizers) with the objective of improving water quality in Europe. Whether or 
not less intensive agriculture leads to a slower uptake of technology is a subject 
that is not well addressed in the literature. Less intensive agriculture implies a 
return to “organics” in a traditional sense, but at the same time opens up doors 
for “disruptive technologies” aided by precision farming and “Big Data” to re-
duce inputs and thereby achieve the regulators ultimate objective.    

Regulatory pressure is not, however, universal across all nations. The EU’s 2011 
regulatory stance against GMO’s (Genetic Modified Organisms) and its 2018 
stance against Gene Edited Crops are in stark contrast to the United States’ 
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approval of such technologies. As a potentially disruptive technology, gene edit-
ing holds a lot of potential to dramatically reduce the requirements for virtually 
all inputs on arable and ultimately non-arable crops. To date, Asia and Africa are 
also firmly against the domestic cultivation of either GMO’s or Gene Edited Crops 
although China’s post 2020 stance on this will be pivotal.  

One consequence of the increased regulatory pressure is that the growers “tool-
box” for controlling weeds, pests, and diseases by chemical means is becoming 
smaller. While this is a greater problem in the EU (as indicated above), this pres-
sure is felt across the globe. In some ways, new technologies (based on biologi-
cals and/-or better conventional breeding) mitigate this downside, but on the 
whole the result is one of increasing pest and disease pressure. One direct impact 
seen in 2018 was the ban of neonicotinoid pesticides across the EU. This resulted 
in a significant change in the way growers control insect pests in certain crops 
from one requiring very low-volume controlled application of pesticides to one 
of much higher volume, less well-controlled application of pesticides – arguably 
with the need for greater machinery technology requirements. Additionally, the 
resurgence of pest problems included the development of Asian Rust in soybeans 
across Latin America and the development of severe infestations of Fall Army 
Worm across much of Africa and Asia in 2018 and 2019. Overall, it is felt that 
the intensity of pest problems, and in particular insect pests, will continue out to 
2045.  

The potential impact of regulatory and pest/disease pressure on the development 
of autonomous agricultural machinery is “less easy” to understand than many 
of the other drivers. In many ways, the move to less input and less intensive 
agriculture might slow down progress in some territories, while at the same time 
synergies between additional disruptive technologies and automation would 
have the reverse effect. Likewise, a predicted increase in pest pressure will likely 
lead to longer retention of “hard chemistry” (conventional pesticides) and a 
slow-down in the adoption of “soft chemistry”, such as biologicals. “Hard chem-
istry” not only works better in conditions of high pest pressure but also, im-
portantly for this study, requires more in the way of technologically advanced 
machinery. 

2.3 Greatest Uncertainties 

This section discusses the greatest challenges and contradictions in predictions 
of the future development of technology. 

Pattern recognition (based on neural networks) seems to be on quite good 
path towards meeting the demands of assessing complex sensor data in real 
time. However, if the difference between objects (e.g., corn and weeds) is not 
significant, neural networks will have precision issues distinguishing crops from 
other objects [12] (e.g., “segmentation based on shape features is mostly 
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effective in cases that little overlapping exists between the objects in the image" 
[12]). Scientists are still not sure how to tackle this problem. Many of the chal-
lenges, such as training of the neural networks and understanding why neural 
networks work so well, are still active fields of research. 

New use cases call for standardization at the national and international level. 
Data security and data processing are major topics in technology research & de-
velopment and in society as well. Experts point out that all the main data pro-
cessing companies and providers are located in North America. The farmers out-
side of that region are concerned about the security of their data (see above). In 
general, there is a lack in the standards for safety and security regarding Big Data 
and finally for autonomous operations. 

Experts claim that the major factor in adopting autonomy (i.e., the limiting factor) 
is the legal situation. The question arises: Will the legal situation provide a basis 
for complete autonomy? The experts answer the question (at least for Europe) 
with a clear “no” (at least for the near future). Furthermore, another question 
arising concerns how to get the machine to the field. In the era of autonomous 
operations, data is necessary for training. However, from the legal point of view, 
who “owns” the data from farms? Besides that, there is an overall issue with 
political instability in many areas, which is directly reflected in the acceptance of 
autonomy in some markets.  

Agricultural operations are not repetitive and their environments are not charac-
terized by well-defined and pre-determined tasks [19]. The decision-making 
process is complex. In order to replace humans, it will require proper input from 
an ever-increasing number of sensors and different types of sensors (besides 
purely visual ones). Otherwise, the process itself might introduce some difficul-
ties. For example, picking crops too early is wasteful, but picking them too late 
slashes weeks off the storage time [4]. A lack of collaboration between research 
groups confounds this problem [1]. Very little field robot software has actually 
been released, published, and documented for others to use [1]. In this area 
communication between humans and machines as well as between machines is 
rather important to ensure digitalization of information from the field. However, 
there are only limited commercial products available for machine-to-machine 
communication, such as [19]. On the other hand, "it is not clear how telematics 
and infield communication solution platforms are open and how well multiple 
systems can interact" [19]. 

There are many challenges regarding trust and acceptance of autonomous 
operations. For example, in smaller agricultural areas, it is difficult to convince 
farmers that they need autonomous technology. Often, they do not want it (e.g., 
they consider it as luxury and as too fancy) and do not see the user benefit. Even 
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more, they might see it as a threat to traditional agriculture and feel threatened 
by the challenges (e.g. loss of knowledge, lack of the ability to “feel” the field). 

Process automation in agriculture exposes numerous complex autonomous ac-
tions. Without enough data, the machines will not learn properly. Therefore, 
platforms are required for data handling. Although some researchers claim that 
there is a great need for unified software platforms, some experts do not cur-
rently see a possibility for “control center solution” for the farmer to cover all 
required actions This rises a problem of the transmission of data over long dis-
tances (e.g., from the field). Second problem is that farmers do not use already 
existing solutions [2]. One of the reasons for this problem might be a misunder-
standing between the industry and farmer needs. Not everything what the in-
dustry develops (e.g. special robots) is working for the farmers. New business 
models are required, especially in understanding the needs between universal 
and specific-dedicated machines (e.g., how an autonomous tractor will drive on 
the street?). On that track, experts offer their opinions regarding the drivers in 
the field. One of the experts, from our interviews, claims that in the near future, 
there are no indications that the driver will disappear from the machine. Contra-
dictory opinion comes from another expert that claims that the technology will 
evolve to make the machines fully autonomous (around 2045). The farmer will 
act as a "controller" sitting at home or at the edge of the field. Machine might 
even become so independent to get the weather forecast and leave, for example, 
before rain is predicted to fertilize the field.  

Sensor and actuator technologies are input/output interfaces of the autono-
mous operation process. The motivation for making actuation actions autono-
mous based on the input sensors is great: i) Currently modern agriculture uses a 
huge amount of energy in ploughing [11]; ii) the Food and Agriculture Organi-
zation of the United Nations estimates that 20–40 % of global crop yields are 
lost each year to pests and diseases, despite the application of around two-mil-
lion tons of pesticides [4]. While autonomous use cases today employ a huge 
number of sensors, more is needed to achieve the same level of quality as with 
human assistance. Technology adaptation considers the addition of missing sen-
sors, enabling the process in the field (e.g., connection of all the sensors), and 
proper actuators. Experts agree that some areas lack (data) infrastructure for 
communication, data transfer, etc. From the technology point of view, some sen-
sors give out too many false warnings (e.g. UAV for field scouting and detection 
of crops and obstacles [3]) and there is a limit of how small things can be. 

Summarizing the technological perspective, the current situation in the agricul-
tural machinery market can be described as a market with a very high degree of 
automation (going back to 10-15 years ago). Automation does not only take 
place separately on individual machines but also across systems (entire processes 
and logistics). The mistakes made by humans can be well balanced by existing 
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technology, and machines can already be operated optimally these days. Most 
experts and scientists agree that autonomy is inevitable and that we will witness 
the rise of autonomous operations in the next 25 years. However, there are also 
those who disagree with the idea of entirely automated farming systems. 
Basedvon their systematic survey about research and development in agricultural 
robotics, Shamshiri et al., claim: “It is not realistic to expect an entirely automated 
farming system in the future” [68]. Besides technology obstacles, there is heavy 
criticism regarding the social aspect, as some researchers claim that full auton-
omy would introduce some other challenges, such as the loss of farming 
knowledge [45]. From the state of the art, and based on our interviews with 
experts, it is easy to conclude that the scope of the challenges is huge and that 
even renowned scientists and experts face challenges in prioritizing and scoping 
all potential issues. In its functionality, technology enables autonomous opera-
tions even today already. However, existing quality aspects are the problem, and 
as these are developed and applied further, more and more new quality aspects 
emerge as challenges. Safety, security, and social aspects play the leading role. 
Existing solutions for pattern recognition and decision-making work with the de-
sired functionality. However, they either do not provide the required quality of a 
functionality or do not quantify such quality at all. 

From a market-related perspective, the factors that create the highest level of 
uncertainty are climate change and regulation. With respect to climate change, 
this uncertainty does not only mean that the development of the climate itself is 
unpredictable but also that its impact on agricultural production is hard to fore-
see. Either way, the impact may be manifold. First, in some regions arable land 
may become unusable if temperatures increase and droughts occur more often. 
Second, increasing volatility in terms of precipitation or natural disasters may lead 
to fluctuations in agricultural production, which would affect both farmers and 
consumers in terms of rising commodity prices for instance. These are just two 
potential direct impacts of climate change on agricultural production but there 
are indirect ones as well. 

To slow down climate change and protect natural resources, governments can 
set up new rules and regulations under which farmers must produce. Such reg-
ulations and policies have a huge impact on the adoption of autonomous ma-
chinery by farmers. However, these regulations are usually implemented by pol-
iticians and ultimately driven by societies, who either support or neglect such 
changes. As one can currently observe in the US, elections have the potential to 
change this entirely and swing the needle from one direction to another. Even if 
these policies do not last forever and may be reverted, they can still distort the 
markets in the short-term. Therefore, regulation and policies seem to be subject 
to a high level of uncertainty as well. 
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2.4 Priority of Influencing Factors 

One goal of the workshops performed with experts were to rank the aforemen-
tioned influencing factors based on their impact – either positive or negative – 
on the development of autonomous agricultural machinery. Every expert was 
asked to name three enablers/inhibitors that they believe to be the most im-
portant ones to watch out for. Afterwards, the individual indications were sum-
marized and prioritized. According to the experts, the following enablers were 
identified as the most important ones (ranked according to relevance): 

1. Available technology/technology adaptation (related to sensor and actuator 
technology, pattern recognition and decision-making process) 

2. Achievement of increased productivity goals (related to farm productivity and 
profitability)  

3. Trust and acceptance of autonomous technology by farmers 
4. Machine-to-machine communication (related to complexity of autonomous 

actions) 
5. Change of agricultural business models (related to consolidation in the AG 

industry and change of food production systems) 
6. Change of climate and natural conditions 
7. Limited resources (also related to climate change and natural conditions) 
8. Regulatory vs. pest/disease pressure 

All the experts concurred that “available technology/technology adaptation” is 
probably the most important influencing factor as this is the basis for develop-
ment and automation will not happen if the technical implementation is not 
available. The second most important factor is “farm productivity/profitability”. 
Against the background of an increasing global population, farmers are pushed 
to increase production – but without overusing natural resources. The experts 
believe that this is only possible if farmers increase their efficiency by adopting 
automated technologies. However, the “acceptance of farmers” is still unclear 
and might hinder this development. Some experts also think that in the future, 
multiple machines (maybe “robotic swarms”) will operate on the field at the 
same time. To coordinate this work and enable simultaneous operations, reliable 
“machine-to-machine communication” is the key factor. Therefore, this is also a 
point of high relevance for the experts. 

The top four enablers on the list, which were all mentioned multiple times by the 
experts, stand out a little bit in comparison to the last four points, which were 
only mentioned once or twice. Nevertheless, some experts also believe that “new 
agricultural business models” will emerge in the future that will change agricul-
tural production systems and therefore also have an impact on the evolution of 
automation. This includes new production systems such as vertical farming (e.g. 
for fruit and vegetables) but also new business players such as Google or Mi-
crosoft, who might serve as data processors. The final three enablers on the list 
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– “climate change”, “limited resources” and “regulation” – are somehow re-
lated to each other as one factor influences the other ones and vice versa. This 
means that “climate change” can lead to alternative “regulation” policies, which 
in turn affect the available “resources” that farmers can use. They all have in 
common that they directly determine the conditions under which farmers are 
able to produce. 
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3 System Classes of Agricultural Machinery and Development Sce-
narios for the Next 25 Years 

In this section of the study, we want to sketch how experts in the field envision 
agricultural machinery with various levels of support and autonomy to develop 
within the next 25 years. For this purpose, we identify four levels of autonomy: 

• Entirely human-driven machines, i.e., with no or low technological  
assistance 

• Assisted human-driven machines, i.e., with technological assistance, e.g. 
with GPS assisted driving 

• Supervised autonomous machines, i.e., using autonomous functions that 
are directly supervised by a human being. 

• Entirely autonomous machines, i.e., without human supervision 

In Section 3.1, we will describe how experts envision these system classes to de-
velop within the next 25 years. In Section 3.2, we will describe these scenarios 
for different kinds of system classes for autonomous agricultural machinery. 

3.1 Scenarios for Various Levels of Autonomy in the Next 25 Years  

It is hard to envision within a time-frame of 25 years how technology will evolve. 
Therefore, we asked for opinions what the above-mentioned system classes 
would look like in the following stages: year 2025, year 2035, and year 2045. It 
was surprising, that the expert opinion was pretty homogeneous regarding the 
general development for these four stages. In the following, we will describe the 
expected development of the four system classes for each stage. 

It is important to remember that the experts discussed these developments with 
a focus on tractor and combine development in mind, but the discussions were 
also extended to how smaller robots could affect the market. 

Year 2025 Entirely human-driven machines: The experts estimate that entirely human 
driven machines will look very similar to entirely human-driven agricultural ma-
chinery today.  

Assisted human-driven machines: The experts estimate that the machines will 
be equipped with more GPS-based navigation. Also, more machines will have 
camera systems. Machines are expected to provide site-specific recommenda-
tions. Furthermore, the experts expect that the amount of assistive technology 
for safety features will still be quite low.  
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Supervised autonomous machines: The experts estimate that there will still 
be a driver in the cabin. In contrast to later years, for 2025 the estimate is that 
one driver will be responsible for one machine in the majority of cases. In excep-
tional cases, maybe one driver will supervise two machines. 

Entirely autonomous machines: The experts estimate that such machines will 
not be in the fields yet, but will be displayed in demo showcases or in closed 
units (buildings). 

Year 2035 Entirely human-driven machines: The experts estimate that entirely human 
driven machines will look very similar to entirely human driven agricultural ma-
chinery today. So, there will be no great change compared to 2025. 

Assisted human-driven machines: The experts estimate that the machines will 
be operated by a human driver and will be equipped with even more camera 
systems. Furthermore, they expect that the amount of assistive technology used 
for safety features will grow.  

Supervised autonomous machines: The experts estimate that in the majority 
of cases supervised autonomous machines will be supervised by an expert oper-
ator, probably certified for this task, who will be online (wireless supervision) and 
no longer in the field. Some experts argue that the operator will still be near the 
machine to handle problems that may arise, so an operator may be driving one 
machine while supervising nearby machines. The autonomy of the machines will 
still be restricted to field- or application-specific tasks. The network infrastructure 
for machine-to-machine communication will be available. 

Entirely autonomous machines: The experts estimate that entirely autono-
mous machines will be in the field with no driver in the cabin. They estimate that 
the machines will act autonomously once they are in the field. The machines will 
not drive to the field autonomously; rather a driver will drive the machine to the 
field (or, depending on size, they will be transported to the field in certain cases). 

Year 2045 Entirely human-driven machines: The experts estimate that entirely human 
driven machines will still be around and will still look very similar to entirely hu-
man driven agricultural machinery today.  

Assisted human-driven machines: The experts estimate that the machines will 
be operated by a human driver and will be similar to systems in 2035, but more 
reliable and well-tested.  

Supervised autonomous machines: The experts estimate that the contact be-
tween the supervisor and the machines will decrease. Furthermore, they expect 
the supervised autonomous machines to have more universal applications (not 
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only field- or application-specific autonomous functionality). The role of the su-
pervisor will change from an operator to a system operator.  

Entirely autonomous machines: The experts estimate that entirely autono-
mous machines and corresponding IT-systems will be able to decide everything, 
i.e., when to go out to the field or which crop protection to choose. The ma-
chines will be more universal, i.e., they will able to handle all implements. The 
operator will plan the tasks for the machines, e.g., in terms of scenarios. The 
farm management systems will probably execute the intelligence to distribute 
the tasks to the machines. Some experts also argue that the machines will be 
able to drive out to the field by themselves without an operator. If so, a garage 
next to the field would avoid accidents or regulatory restrictions. 

3.2 Autonomous Machinery in Agricultural Work Processes 

The general work steps of an agricultural year are shown in Figure 12. Today, 
the farmer is the central executive organ of these work steps. Additionally, logis-
tics plays a central role in the execution of the individual work steps in terms of 
refilling the machines, or transport between fields. It is important to keep in mind 
that various crops have different cultivation requirements and that a farmer’s 
crop rotation is defined by agricultural, environmental and economic factors. The 
automation potentials of the single work steps will be described below. 

Tillage is used for the crushing, splitting and mixing of harvest remains. In addi-
tion, weed seeds and lost crop seeds are stimulated to germinate and afterwards 
destroyed in a second tillage pass. Additionally, the evaporation of water is re-
duced [69]. Many different implements for tillage are available, and efficient ma-
chine control systems are implemented (or in development) to reduce parameters 
such as fuel consumption. In addition to these improvements, the focus is shift-
ing to automatic recording of the work results. For example, camera systems can 
be used to determine the condition of the ground cover (soil surface covered 
with plant residues) [70]. Another example: Using electromagnetic induction, it 
is possible to record soil parameters (e.g., soil compaction, soil type). The data 
can be used in real time for various kinds of implement control (depth control in 
terms of tillage). Besides, it is possible to use this information to support the 
creation of application maps [71] [72]. Tillage has high energy requirements in 
terms of tractive power. For this reason, it is likely that in the future, existing 
tractor systems will be automated rather small robots being used [68]. 
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Figure 12  Main work steps of the farm operator during a plant production cycle (own illustration). 

Seeding: It is important to have an appropriate seed bed and seed placement 
[69]. Appropriate seeding depth is important for optimum germination and plant 
development. There are technical approaches for continuously monitoring the 
placement depth of seed, and technical monitoring in real time is already possible 
[73] [74]. In this area, the focus is on variable seed application, precision seeding 
with the help of simulation models and real time monitoring [75]. For the work 
step “Seeding” lower tractive power is required and hence, it is also possible to 
use small robotic systems. Depending on the robot size, robot units must act in 
swarms to achieve area performance that is comparable to existing systems [76] 
[77]. Swarm systems with larger autonomous vehicles are also possible depend-
ing on the size of the farm [70]. From a technical point of view, the basic condi-
tions for an autonomous process have been met and the scenarios presented are 
therefore conceivable in the future. 

Mechanical weed control: Weed control before row closure can be either me-
chanical or chemical. Mechanical weed control is becoming more and more im-
portant due to prohibitions of individual active substances and resistance 
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problems of individual pesticides. In the field of mechanical weed control, in par-
ticular for root crops like sugar beets and maize (high row distance), robotics 
technology is well advanced. For example, robots are able to eliminate weeds in 
the rows [78]. The agricultural machinery industry has set the focus on hoeing, 
and it is already possible to hoe between and within rows based on GPS-
coordinates and camera systems [79]. Mechanical weed control was one of the 
first fields of automation in agriculture [80]. Hence, the autonomy potential is 
high. 

Mineral or organic fertilization: Fertilization is carried out to an optimal spe-
cial intensity, which takes into account economic, agronomic and environmental 
aspects. In mineral fertilization, the focus is on technologies that optimize distri-
bution quality and thus distribution accuracy. The technology for sensor-based 
and satellite-based variable rate applications is improving continuously and 
promises to be increasingly accepted [81]. All in all, an autonomous design is 
technically feasible, but the area performance of todays’ systems must be taken 
into account. For this reason, it is difficult to estimate robotic size. In contrast to 
mineral fertilizers, manure has a very heterogeneous nutrient composition. With 
the help of NIR sensors, the nutrients in the manure can be determined in real 
time and applied as required. The application of manure can be carried out au-
tonomously, but the challenges are logistics (manure to field), soil compaction 
and area performance. Manure application with hose systems may be an alter-
native. Previous systems will probably be automated or new process approaches 
will be used.    

Crop protection: The application of pesticides is similar to the application of 
mineral fertilizer. Manufacturers are improving the sprayers to enable accurate 
and precise applications. Some companies rely on technologies that detect 
weeds and plant diseases to specifically apply pesticides (see & spray) [82]. The 
technical knowledge for carrying out spraying autonomously is available in prin-
ciple. In practical implementation, area performance must be taken into account.    

Harvesting: The harvest is performed by the combine harvester or by self-pro-
pelled harvesting machines. The tasks of a combine are subdivided as follows: 
cutting and picking, threshing and separation, cleaning and collecting, chopping 
and distributing straw. The threshing and separation processes are difficult to 
detect by sensors. However, it is possible to record the result at the end, such as 
grain loss, straw in the grain and percentage of broken grain [80]. The driver’s 
work is facilitated by the increasing intelligence of the machines. A combine au-
tomatically adjusts its machine settings to the specified guide values in real time 
at optimum speed. NIR sensors can be used to detect the ingredients of the grain. 
In Japan, autonomous combines have been tested in practice [83]. Another idea 
is to split the harvesting process into single steps. Logistics and transport of har-
vested goods will remain a challenge. 
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In these days, in highly industrialized countries people tend not to work on farms 
anymore. Therefore, the technical development in terms of autonomous systems 
like robots will be pushed even more. According to experts, robot size is crucial 
in terms of area performance.  

Small units of robotic swarms are interesting because of their low weight, which 
results in negligible soil compaction. However, according to some experts, they 
will still remain a niche solution for single agriculture process steps. 

Due to technological development, a rethinking and restructuring of established 
processes is also conceivable and possibly beneficial in terms of integrating and 
establishing autonomous systems in practice. Regarding to experts, hybrid sys-
tems are a permanent or maybe even a transition solution. Depending on the 
technical requirements, individual work steps will be carried out autonomously 
and other tasks assisted by a driver. In this context, modular cabin concepts make 
sense in order to reduce costs of expensive cabins. Regarding to experts, auton-
omous systems will be modular in the future and will replace classic tractor and 
implement systems.  

In summary, the focus of technical development is on site-specific farming (in-
dependent of machine size) to make single work processes more efficient. 
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4  Market Assessment 

As already indicated above, the main focus of this study is on identifying and 
describing the main influencing factors that drive the autonomous agricultural 
machinery market – from a qualitative perspective. This section, however, is de-
signed to give readers also an idea about the potential quantitative market de-
velopment within the next 25 years.  

In general, a quantitative market forecast is indeed a challenging exercise as: 

• Many state-of-the-art technologies are still being developed and their appli-
cation to agricultural production has to be proven. Hence, except for some 
prototypes autonomous machines have not been used commercially by farm-
ers yet. 

• The current farm structure and degree of mechanization differs strongly be-
tween some regions and countries, so the rate at which farmers are adopting 
autonomous machines – once they are commercially available – is expected 
to vary considerably, too. 

• The forecast horizon until 2045 is rather long. For this time period, there exist 
only few long-term projections for agricultural markets and the related influ-
encing factors – which in turn also include a lot of uncertainty. 

The lack of historical data on autonomous machines and reliable projections 
about the influencing factors going forward make a solid quantification of the 
different classes of autonomous agricultural machines difficult. To overcome this 
problem, we used the following approach: 

1. First, we focused on tractor sales only and used annual sales data as well as 
FAO projections [52] for market-related influencing factors to estimate the 
total tractor demand in different regions for the years 2025, 2035, and 2045 
(see section 4.1). With regard to the available sales data, we cannot distin-
guish between different size classes (e.g. in terms of horsepower) or automa-
tion categories here but merely calculated a baseline for total market driven 
tractor demand. 

2. Second, to map the technological development to the total tractor demand, 
we asked the experts what they believe the relative market share of the four 
considered automation classes (i.e. entirely human driven, assisted human 
driven, supervised autonomous, and entirely autonomous) will be in 2025, 
2035, and 2045 (section 4.2). By applying the experts’ estimates to the calcu-
lated baseline, we can split the total tractor demand into the different auto-
mation classes and derive an estimate for each type of automation. Readers 
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should keep in mind, however, that due to the challenges and difficulties 
mentioned above, the figures can only serve as a rough guideline for the ex-
pected market development. 

4.1 Rough Forecast of Market Development 

In this subsection, we want to show how the total global and regional demand 
for tractors might develop out to the year 2045. This means we really look at the 
development of annual tractor sales and not at the total fleet of tractors that are 
used for agricultural production in certain countries or regions. To some extent, 
these variables are correlated with each other, of course, but our quantitative 
analysis is based on historical data about annual tractor sales collected from var-
ious sources for selected countries. 

Depending on regional farm characteristics (e.g., number and average size of 
farms), the types and numbers of tractors sold per year can differ substantially. 
Measured in absolute terms, most of the tractors worldwide are sold in the Asian 
countries China and India – although these tractors are on average much smaller 
and less technologically advanced than those sold in North America or Western 
Europe. Unfortunately, the publicly available data on tractor sales is not so com-
prehensive that it allows us to account for such features and differentiate by 
horsepower classes. Instead, we can only work with total tractor sales here, 
which is our target variable.  

The set of market-related explanatory variables that have an impact on tractor 
sales and that we use to predict the future market development is largely based 
on FAO data. The reason why we use FAO data for this is that FAO provides both 
historical and forward-looking data (projections until 2050) for a consistent set 
of variables such as harvested area, gross value of agricultural production, ru-
ral/urban population, number of livestock etc. Hence, we can first use the histor-
ical data in a regression framework and estimate a functional relationship be-
tween those explanatory variables and tractor sales. Afterwards, we use the pro-
jected development of those explanatory variables to calculate future tractor 
sales.  

Within their agricultural projections, the FAO provides three different scenarios 
based on different political, social, or economic assumptions. For this analysis, 
we decided to use the scenario called “towards sustainability” as we believe that 
societies demand this and a continuation of “business as usual”, which would 
be another scenario, is not very likely in the long run. As these scenarios turn out 
to be rather different though, choosing one or the other would certainly change 
the outcome of this analysis.  

The development of tractor sales for the years 2025, 2035, and 2045, which we 
derived from our analysis is presented in Table 1. To account for different market 
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characteristics and speed of technological adoption by farmers, we decided to 
group similar countries together and defined the following clusters: 

• High-technology, large-scale markets (USA, Canada, Australia) 
• Low-technology, large-scale markets (Brazil, Argentina, Mexico) 
• Western European markets (France, Germany, Italy, Spain, UK) 
• Eastern European markets (Russia, Poland) 
• Small-scale Asian markets (China, India, Japan, Korea) 
• African & Middle Eastern markets (South Africa, Turkey) 

This definition is driven by technological and structural aspects and does not nec-
essarily correspond with geographic regions. The countries mentioned in paren-
theses are those where historical tractor sales data was available and that we 
used in our calculations. Although this is a relatively small sample size, the coun-
tries represent a large share of the global market accounting for approximately 
80 % of global tractor sales. The estimated future development of tractor de-
mand in the different markets is presented in Table 1. The arrows are supposed 
to indicate whether the total tractor sales increase, decrease, or stay the same 
compared to the previous point in time. 

On a global basis, we can conclude that the demand for tractors is expected to 
increase both in 2025 and 2035, but stays the same afterwards. This is mainly 
driven by the Asian markets, which continue to grow as a whole. A similar picture 
can be observed in the high-technology large scale North American market, 
which is also expected to grow until 2035 but start to decrease afterwards. Such 
a decrease of demand will set in even earlier in the Western and Eastern Euro-
pean market, which is expected to slightly improve until 2025 though. Somewhat 
surprisingly, the tractor demand in both the low-technology large-scale market 
and the African market is projected to continuously shrink over time. 

It is important to keep in mind that these tendencies just relate to the total num-
ber of tractors (in units) that are expected to be sold on average in the respective 
year. We can neither make a statement on the types nor on the value of the 
tractors being sold. This means that even if a market is expected to decline in 
terms of total unit sales, there might still be an upward sloping trend in certain 
tractor categories: i.e., sales of larger (in terms of horsepower) or more techno-
logically advanced machines might still increase. 
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Table 1 Development of annual tractor sales (in units), own estimation on the basis of historical tractor sales data for 
the selected countries mentioned above and FAO’s agricultural long-term projections until 2050. 

Development of annual 
tractor unit sales 

Estimated 
share of global 

sales (2009-
2018) 

2025 vs. 10-
year average 

2009-18 
2035 vs. 2025 2045 vs. 2035 

High-technology large-scale 
markets  
(North America & Australia) 

15 % 
   

Western European markets  7 %    

Small-scale Asian markets 67 % 
   

Low-technology, large-scale 
markets 
(Latin America) 

4 % 
   

Eastern European markets 3 % 
   

African & Middle Eastern mar-
kets 

4 % 
   

Total global market 100 % 
   

4.2 Assessment According to System Type 

In this section, we will illustrate how the different types of automation will be 
distributed in the selected markets in 2025, 2035, and 2045. The results pre-
sented in the tables below are entirely based on the assessment of experts. The 
size of the circles represents the relative market share of the respective automa-
tion type. We use the classification shown in Table 2. 

Table 2  Legend for the tables in this section. 

Legend 
    

Market share > 80 % 50 – 80 % 10 – 50 % < 10 % 
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For the year 2025 (cf. Table 3), the experts agreed that in most markets the sit-
uation will be more or less comparable to the current status quo. This means that 
there no entirely autonomous machines will be used commercially by farmers. 
Moreover, even the class of supervised autonomous machines will just represent 
a niche market in the high-technology regions of North America and Western 
Europe. Except for the African and maybe the small-scale Asian market, assisted 
human-driven tractors and combines will account for the biggest market share 
in all regions. The African markets will still be dominated by machines without 
technological assistance in 2025, and the experts assume that this will still be the 
case in 2035 (cf. Table 4). 

Table 3 Market share of automation type for the year 2025, estimation based on expert interviews/workshops. 

Year 2025 

Entirely hu-
man-driven (no 
technological 

assistance) 

Assisted hu-
man-driven 

(with techno-
logical assis-
tance, e.g., 

GPS) 

Supervised  
autonomous 

machines 

Entirely  
autonomous 

machines 

High-technology, large-
scale markets (North 
America & Australia) 

 
 

 --- 

Western European mar-
kets    

 --- 

Small-scale Asian markets  
 

  --- 

Low-technology, large-
scale markets (Latin 
America) 

  
--- --- 

Eastern European mar-
kets   

--- --- 

African & Middle Eastern 
markets 

 
 --- --- 
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Table 4 Market share of automation type for the year 2035, estimation based on expert interviews/workshops. 

Year 2035 

Entirely hu-
man driven 
(no techno-
logical assis-

tance) 

Assisted hu-
man driven 

(with techno-
logical assis-
tance, e.g., 

GPS) 

Supervised au-
tonomous ma-

chines 

Entirely autono-
mous machines 

High-technology, large-
scale markets (North 
America & Australia)  

 
   

Western European mar-
kets  

   

Small-scale Asian mar-
kets      

Low-technology, large-
scale markets (Latin 
America) 

 
  --- 

Eastern European mar-
kets    --- 

African & Middle Ea-
stern markets 

 
  --- 

In contrast to this, the North American, Australian, Western European and Asian 
markets will probably already see the first entirely autonomous machines oper-
ating in the fields. Although the market share of entirely autonomous machines 
in the large-scale North American markets is estimated to be higher than in West-
ern Europe, some experts believe that the shift towards automation will begin in 
Western Europe, as the pressure for farmers to be more sustainable is much 
higher here than in other regions. The American and Asian markets will follow. 
Interestingly, the experts also believe that farmers in Asia will be more tempted 
to skip the stage of supervised autonomy and invest directly into entirely auton-
omous machines. Nevertheless, the classical human-driven machines – regardless 
of technological assistance – will remain the largest class in all regions in 2035. 
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By the year 2045 (cf. Table 5), this will have changed, however, in the high-
technology, large-scale North American and Western European markets. Accord-
ing to the experts, the majority of agricultural machines in these markets will 
operate either in supervised mode or entirely autonomously, whereas human-
driven tractors and combines will only have a marginal market share. The experts 
were not sure whether the higher share of autonomous agricultural machines 
will be in North America or in Western Europe. They came to the conclusion that 
this will largely depend on laws and legislation in those regions – which will either 
enable or inhibit the operation of autonomous machines. In terms of automa-
tion, the other regions are still expected to lag behind. Although the Latin Amer-
ican and Eastern European markets will also develop in this direction, human-
driven machines are still expected to represent a significant market share. 

Table 5 Market share of automation type for the year 2045, estimation based on expert interviews/workshops. 

Year 2045 

Entirely human 
driven (no tech-
nological assis-

tance) 

Assisted human 
driven (with 

technological 
assistance, e.g. 

GPS) 

Supervised au-
tonomous ma-

chines 

Entirely autono-
mous machines 

High-technology, large-
scale markets (North 
America & Australia) 

    

Western  
European  
markets  

  
 

 

Small-scale Asian mar-
kets     

Low-technology, large-
scale markets (Latin 
America) 

    

Eastern European mar-
ket     

African & Middle Eastern 
Markets     
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4.3 Greatest Uncertainties 

When looking at the total tractor market development in section 4.1, or the dis-
tribution of automation classes in section 4.2, one should not forget that both 
forecasts are still subject to a high level of uncertainty. In fact, the level of confi-
dence decreases with the length of the forecast horizon as key influencing fac-
tors might develop completely differently than anticipated today.  

Our estimations of the total tractor demand are based on FAO projections, for 
instance, which in turn are based on certain assumptions on policies, economic 
development or natural conditions. These may very well change in the course of 
time and thus may lead to higher/lower tractor demand in the end. Particularly 
policy and regulation decisions, which are often driven by societal changes and 
can foster or slow down structural changes in agricultural production, are hard 
to predict. It is also noteworthy that the figures that we calculated in section 4.1, 
only refer to the average number of tractors expected to be sold annually. This 
does exclude short-run fluctuations, which may occur and result in higher/lower 
sales in a particular year.  

What is also important to mention is that we only had information on a limited 
set of variables for our estimations, and could not account for some potentially 
relevant influencing factors, such as tractor prices for instance, where no com-
plete dataset was available. The development of future machinery prices is hard 
to foresee and also a major source of uncertainty. The prices will certainly affect 
the total demand for agricultural machines, but may even have a greater impact 
on the proportion of the different automation classes. If the prices for supervised 
and entirely autonomous machines are significantly higher than those for hu-
man-driven machines, this might eradicate any operational efficiency gains and 
hamper farmers´ willingness to invest in autonomy. 

Further progress in research on biotechnology or gene editing may also be a 
game changer in the future, which has the potential to reshape huge parts of 
agricultural production. In countries and regions, where societies accept these 
technologies, agriculture might develop in a different direction than in those 
countries where such technologies are not approved. In the end, this will also 
affect the adoption of autonomous machinery by farmers and potentially inten-
sify differences across regions. 

The increasing level of uncertainty out to the year 2045 also became also visible 
in the discussions with the experts. While they were pretty confident estimating 
the market shares in 2025 based on their knowledge and personal experience, 
they were really challenged when they were asked about their evaluation of the 
different markets in 2045 and could only specify a broader range of possible 
market shares. 
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5 Summary and Conclusion 

This study had the aim to scout the state of art as well as the future development 
of the autonomous agricultural machinery market. First, the relevant factors that 
will influence the development of autonomous machinery in the market were 
identified including estimating their importance, understanding the biggest un-
certainties and getting a feeling how the state of the practice and art as well as 
the experts see future developments. From our perspective 13 influence factors, 
categorized into technology-related and market-related factors, will play a deci-
sive role. On this basis, experts in the field prioritized four factors as most im-
portant influence factors: (1) available technology/technology adaptation, (2) the 
achievement of increased productivity goals, (3) trust and acceptance of auton-
omous technology by farmers and (4) machine-to-machine communication. In 
addition, many uncertainties with regard to the influence factors were taken into 
account as well, e.g., with regard to the factors climate change and policies/reg-
ulations, which also have a counter-effect on other factors (e.g., farm productiv-
ity/profitability) and have the potential to reshape agricultural production sys-
tems.  

Key Development for the four classes of entirely human-driven, assisted human-
driven, supervised autonomous and entirely autonomous systems were discussed 
with a preview how these systems will look like in the years 2025, 2035 and 
2045. Whereas the entirely human-driven systems will remain similar to today’s 
shape, significant changes are expected to the other three classes. Assisted sys-
tems will be able to support more complex actions, being equipped with more 
cameras and more safety features. The class of supervised autonomous machines 
will evolve with lower demands on supervisor presence and qualification over 
time and an increase from field- and application specific autonomous actions 
towards more universal actions. The class of entirely autonomous machines de-
velops from pure demo systems via systems that act autonomously on the field 
with defined plans once they are there towards systems that receive rough plan-
ning via other systems and then act completely autonomously. 

Finally, a quantitative estimate of the future market development is given which 
is calculated on the total tractor demand (based on available data on tractor sales 
and FAO projections) on the one hand, and the adoption rate of different auto-
mation classes (by asking experts) on the other hand. While total tractor demand 
is mainly driven by Asian countries, the experts believe that the uptake of auton-
omous technology will be led by North America and Western Europe.  
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In general, we can conclude that there will be a clear move towards autonomous 
agricultural systems in the long-run but the speed at which farmers adopt auton-
omous systems will differ substantially between different regions/markets. This is 
also a result of the different farm and production structures, of course. 



 

Copyright © Fraunhofer IESE 2019 

References 

[1] Jensen K, Larsen M, Nielsen S, Larsen L, Olsen K, Jørgensen R. To-
wards an Open Software Platform for Field Robots in Precision Ag-
riculture. Robotics 2014;3(2):207–34. 

[2] Hunt ER, Daughtry CST. What good are unmanned aircraft systems 
for agricultural remote sensing and precision agriculture? Interna-
tional Journal of Remote Sensing 2017;39(15-16):5345–76. 

[3] Walter A, Khanna R, Lottes P, Stachniss C, Siegwart R, Nieto J et al. 
Flourish -A robotic approach for automation in crop management. 
International Conference on Precision Agriculture 2018:1–9. 

[4] King A. Technology: The Future of Agriculture. Nature 
2017;544(7651):S21-S23. 

[5] Antille DL, Lobsey CR, McCarthy CL, Thomasson JA, Baillie CP. A 
review of the state of the art in agricultural automation. Part IV: 
Sensor-based nitrogen management technologies. In: 2018 Ameri-
can Society of Agricultural and Biological Engineers, Annual Inter-
national Meeting, At Detroit, Michigan. 

[6] VDI Technologiezentrum GmbH. HYLAP: Hyperspektrale Prozess-
kontrolle in der Lebensmittel- und Agrarproduktion der Zukunft 
4.0. [October 28, 2019]; Available from: https://www.photonik-
forschung.de/projekte/photonische-prozessketten/pro-
jekt/hylap.html. 

[7] Wang S, Song J, Lien J, Poupyrev I, Hilliges O. Interacting with Soli: 
Exploring Fine-Grained Dynamic Gesture Recognition in the Radio-
Frequency Spectrum. In: Annual Symposium on User Interface Soft-
ware and Technology, Tokyo, Japan, 2016., p. 851–860. 

[8] Parzer P, Bauer S, Haller M, Perteneder F, Probst K, Rendl C et al. 
RESi: A Highly Flexible, Pressure-Sensitive, Imperceptible Textile In-
terface Based on Resistive Yarns. In: ACM Symposium on User In-
terface Software and Technology 2018, p. 745–756. 
 
 
 



 

Copyright © Fraunhofer IESE 2019 

[9] Withana A, Groeger D, Steimle J. Tacttoo: A Thin and Feel-Through 
Tattoo for On-Skin Tactile Output. In: Proceedings of the 31st An-
nual ACM Symposium on User Interface Software and Technology, 
2018, p. 365–378. 

[10] Kim LH, Follmer S. SwarmHaptics. In: Brewster S, Fitzpatrick G, Cox 
A, Kostakos V, editors. Proceedings of the 2019 CHI Conference on 
Human Factors in Computing Systems - CHI '19. New York, New 
York, USA: ACM Press; 2019, p. 1–13. 

[11] Harrington K, Large D, Burnett G, Georgiou O. Exploring the Use of 
Mid-Air Ultrasonic Feedback to Enhance Automotive User Inter-
faces. Proceedings of the 10th International Conference on Auto-
motive User Interfaces and Interactive Vehicular Applications, To-
ronto, Canada 2018:11–20. 

[12] Duckett T, Pearson S, Blackmore S, Grieve B. Agricultural Robotics: 
The Future of Robotic Agriculture; Available from: 
https://arxiv.org/ftp/arxiv/papers/1806/1806.06762.pdf. 

[13] Kiani S, Jafari A. Crop detection and positioning in the field using 
discriminant analysis and neural networks based on shape features. 
Journal of Agricultural Science and Technology 2012;14(4):755–65. 

[14] Pérez AJ, López F, Benlloch JV, Christensen S. Colour and shape 
analysis techniques for weed detection in cereal fields. Computers 
and Electronics in Agriculture 2000;25(3):197–212. 

[15] Cho S, Jeong J, Lee D. Weed-plant discrimination by machine vision 
and artificial neural network. Biosystems Engineering 
2002;83(3):275–80. 

[16] Åstrand BS, Baerveldt A-J. A mobile robot for mechanical weed 
control. International Sugar Journal 2003;105(1250):89–95. 

[17] Castaño F, Beruvides G, Haber RE, Artuñedo A. Obstacle Recogni-
tion Based on Machine Learning for On-Chip LiDAR Sensors in a 
Cyber-Physical System. Sensors (Basel, Switzerland) 2017;17(9). 

[18] Farias G, Fabregas E, Peralta E, Vargas H, Hermosilla G, Garcia G et 
al. A Neural Network Approach for Building An Obstacle Detection 
Model by Fusion of Proximity Sensors Data. Sensors (Basel, Switzer-
land) 2018;18(3). 
 



 

Copyright © Fraunhofer IESE 2019 

[19] Bauckhage C, Kersting K. Data Mining and Pattern Recognition in 
Agriculture. Künstliche Intelligenz (KI - Künstliche Intelligenz) 
2013;27(4):313–24. 

[20] Baillie CP, Thomasson JA, Lobsey CR, McCarthy CL, Antille DL. A 
review of the state of the art in agricultural automation. Part I: 
Sensing technologies for optimization of machine operation and 
farm inputs. American Society of Agricultural and Biological Engi-
neers, Annual International Meeting 2018. 

[21] Baillie CP, Thomasson JA, Lobsey CR, McCarthy CL, Antille DL. A 
review of the state of the art in agricultural automation. Part III: Ag-
ricultural machinery navigation systems. American Society of Agri-
cultural and Biological Engineers, Annual International Meeting 
2018. 

[22] Bechar A, Vigneault C. Agricultural robots for field operations: 
Concepts and components. Biosystems Engineering 2016;149:94–
111. 

[23] Montemerlo M, Roy N, Thrun S. Perspectives on standardization in 
mobile robot programming the Carnegie Mellon Navigation 
(CARMEN) Toolkit. In: Proceedings 2003 IEEE/RSJ International 
Conference on Intelligent Robots and Systems (IROS 2003) (Cat. 
No.03CH37453): IEEE; 2003, p. 2436–2441. 

[24] Nesnas IAD, Wright A, Bajracharya M, Simmons R, Estlin T. 
CLARAty and challenges of developing interoperable robotic soft-
ware. In: Proceedings 2003 IEEE/RSJ International Conference on 
Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453): 
IEEE; 2003, p. 2428–2435. 

[25] Cepeda JS, Chaimowicz L, Soto R. Exploring Microsoft Robotics 
Studio as a Mechanism for Service-Oriented Robotics. In Proceed-
ings of the Robotics Symposium and Intelligent Robotic Meeting 
(LARS), Latin American, Sao Bernardo do Campo, Brazil 2010:7–12. 

[26] Quigley M, Gerkey B, Conley K, Faust J, Foote T, Leibs J et al. ROS: 
An open-source Robot Operating System. Proceedings of the ICRA 
Workshop on Open Source Software, Kobe, Japan 2009. 

[27] Makarenko A, Brooks A, Kaupp T. Orca: Components for Robotics. 
Proceedings of IEEE/RSJ International Conference on Intelligent Ro-
bots and Systems 2006. 



 

Copyright © Fraunhofer IESE 2019 

[28] Bruyninckx H. Open robot control software: the OROCOS project. 
In: 2001 IEEE international conference on robotics and automation: 
IEEE; 2001, p. 2523–2528. 

[29] García-Pérez L, García-Alegre MC, Ribeiro A, Guinea D. An agent 
of behaviour architecture for unmanned control of a farming vehi-
cle. Computers and Electronics in Agriculture 2008;60(1):39–48. 

[30] Beck AB, Andersen NA, Andersen JC, Ravn O. MobotWare – A 
Plug-in Based Framework for Mobile Robots. IFAC Proceedings Vol-
umes 2010;43(16):127–32. 

[31] Thomasson JA, Baillie CP, Antille DL, McCarthy CL, Lobsey CR. A 
review of the state of the art in agricultural automation. Part II: On-
farm agricultural communications and connectivity. American Soci-
ety of Agricultural and Biological Engineers, Annual International 
Meeting, At Detroit, Michigan, 2018. 

[32] Bechar A, Vigneault C. Agricultural robots for field operations. Part 
2: Operations and systems. Biosystems Engineering 2017;153:110–
28. 

[33] Schimmelpfennig D. Farm Profits and Adoption of Precision Agri-
culture. [October 24, 2019]; Available from: 
https://www.ers.usda.gov/webdocs/publications/80326/err-
217.pdf?v=0. 

[34] Milioto A, Lottes P, Stachniss C. Real-time Semantic Segmentation 
of Crop and Weed for Precision Agriculture Robots Leveraging 
Background Knowledge in CNNs; 2017. 

[35] McCool CS, Beattie J, Firn J, Lehnert C, Kulk J, Bawden O et al. Effi-
cacy of Mechanical Weeding Tools: a study into alternative weed 
management strategies enabled by robotics. IEEE Robot. Autom. 
Lett. 2018:1. 

[36] Riggio G, Fantuzzi C, Secchi C. A Low-Cost Navigation Strategy for 
Yield Estimation in Vineyards. IEEE International Conference on Ro-
botics and Automation (ICRA) 2018:2200–5. 

[37] Thayer TC, Vougioukas S, Goldberg K, Carpin S. Routing Algo-
rithms for Robot Assisted Precision Irrigation. In: Lynch K, Automa-
tion IICoRa, editors. 2018 IEEE International Conference on Robot-
ics and Automation (ICRA): 21-25 May 2018. [Piscataway, NJ]: IEEE; 
2018, p. 2221–2228. 



 

Copyright © Fraunhofer IESE 2019 

[38] Mutschler AS. Towards Autonomous Farming. [October 22, 2019]; 
Available from: https://semiengineering.com/toward-autonomous-
farming/. 

[39] SAE International. Automated Driving - Levels of Driving Automa-
tion are Defined in New SAE International Standard J3016 2014. 

[40] Koopman P. An Overview of Draft UL 4600: Standard for Safety for 
the Evaluation of Autonomous Products. [October 22, 2019]; Avail-
able from: https://medium.com/@pr_97195/an-overview-of-draft-
ul-4600-standard-for-safety-for-the-evaluation-of-autonomous-
products-a50083762591. 

[41] ISO-Standard. ISO/PAS 21448:2019 Road vehicles — Safety of the 
intended functionality. [October 21, 2019]; Available from: 
https://www.iso.org/standard/70939.html. 

[42] N.N. Homologation. [October 24, 2018]; Available from: 
https://searchcio.techtarget.com/definition/homologation. 

[43] Bostrom N, Yudkowsky E. The ethics of artificial intelligence. In: 
Frankish K, Ramsey WM, editors. The Cambridge handbook of arti-
ficial intelligence. Cambridge: Cambridge University Press; 2014, p. 
316–334. 

[44] Ong Y-S, Gupta A. AIR5: Five Pillars of Artificial Intelligence Re-
search. IEEE Transactions on Emerging Topics in Computational In-
telligence 2019;3(5):411–5. 

[45] Dawoud M, Altilar DT. Cloud-based E-health systems: Security and 
privacy challenges and solutions. In: 2nd International Conference 
on Computer Science and Engineering: Antalya-Türkiye 5-8 Ekim 
(October) 2017. New York: IEEE; 2017, p. 861–865. 

[46] Bertino E. Big Data - Security and Privacy. In: Carminati B, editor. 
2015 IEEE International Congress on Big Data (BigData Congress): 
June 27, 2015 - July 2, 2015, New York, New York, USA. Pisca-
taway, NJ: IEEE; 2015, p. 757–761. 

[47] Devitt SK. Cognitive factors that affect the adoption of autono-
mous agriculture. Farm Policy Journal 2018;15(2):49–60. 

[48] Archer DW, Dawson J, Kreuter UP, Hendrickson M, Halloran JM. 
Social and political influences on agricultural systems. Renewable 
Agriculture and Food Systems 2008;23(04):272–84. 



 

Copyright © Fraunhofer IESE 2019 

[49] The Telegraph. Top 10 technologies that were ahead of their time. 
[October 15, 2019]; Available from: https://www.tele-
graph.co.uk/technology/news/11377731/Top-10-technologies-that-
were-ahead-of-their-time.html. 

[50] Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedling-
stein P et al. Long-term Climate Change: Projections, Commitments 
and Irreversibility. Climate Change 2013: The Physical Science Basis. 
Contribution of Working Group I to the Fifth Assessment Report of 
the Intergovernmental Panel on Climate Change 2013:1029–136. 

[51] Nearing MA, Pruski FF, O'Neal MR. Expected Climate Change Im-
pacts on Soil Erosion Rates: A Review. Journal of Soil and Water 
Conservation 2004;59(1):43–50. 

[52] FAO. The Future of food and agriculture - Alternative Pathways to 
2050. Summary version. [October 14, 2019]; Available from: 
http://www.fao.org/3/CA1553EN/ca1553en.pdf. 

[53] Tubiello FN, Salvatore M, Cóndor Golec RD, Ferrara A, Rossi S, 
Biancalani R et al. Agriculture, forestry and other land use emis-
sions by sources and removals by sinks. Statistics Division, Food and 
Agriculture Organization: Rome 2014. 

[54] European Commission. Farm Structures. [October 15, 2019]; Avail-
able from: https://ec.europa.eu/info/sites/info/files/food-farming-
fisheries/farming/documents/farm-structures_en.pdf. 

[55] USDA, National Agricultural Statistics Service. Farms and Land in 
Farms 2018 Summary 04/18/2019. [October 12, 2019]; Available 
from: https://www.nass.usda.gov/Publications/Todays_Reports/re-
ports/fnlo0419.pdf. 

[56] Sheng Y, Ding J, Huang J. The Relationship between Farm Size and 
Productivity in Agriculture: Evidence from Maize Production in 
Northern China. American Journal of Agricultural Economics 
2019;101(3):790–806. 

[57] FAO. 2000 world census of agriculture: Analysis and international 
comparison of the results (1996-2005). Rome: Food and Agricul-
ture Organization of the United Nations; 2013. 

[58] European Commission. Farm structure survey 2016. [October 23, 
2019]; Available from: https://appsso.eurostat.ec.eu-
ropa.eu/nui/show.do?dataset=ef_m_farmleg&lang=en. 



 

Copyright © Fraunhofer IESE 2019 

[59] FAO. The future of food and agriculture: Trends and challenges. 
Rome: Food and Agriculture Organization of the United Nations; 
2017. 

[60] Key ND, Roberts MJ. Commodity Payments, Farm Business Survival, 
and Farm Size Growth. United States. Dept. of Agriculture. Eco-
nomic Research Service; 2007. 

[61] Bellmann C, Hepburn J. The Decline of Commodity Prices and 
Global Agricultural Trade Negotiations: A Game Changer? poldev 
2017;8(1). 

[62] OECD/FAO. OECD-FAO Agricultural Outlook 2018-2027. Rome: 
OECD Publishing; 2018. 

[63] United Nations, Department of Economic and Social Affairs, Popu-
lation Division. World Urbanization Prospects: The 2018 Revi-
sion(ST/ESA/SER.A/420). New York: United Nations; 2019. 

[64] Wang Y-s. The Challenges and Strategies of Food Security under 
Rapid Urbanization in China. Sustainability 2019;11(2):542. 

[65] Regmi A, Dyck J. Effects of Urbanization on Global Food Demand. 
[October 16, 2019]; Available from: https://www.ers.usda.gov/web-
docs/publications/40303/14974_wrs011e_1_.pdf?v=0. 

[66] Hawksworth J, Audino H, Clarry R. The Long View - How will the 
global economic order change by2050? [October 12, 2019]; Availa-
ble from: https://www.pwc.com/gx/en/world-2050/assets/pwc-the-
world-in-2050-full-report-feb-2017.pdf. 

[67] Msangi S, Rosegrant MW. Feeding the Future’s Changing Diets: Im-
plications for Agriculture Markets, Nutrition, and Policy. Interna-
tional Food Policy Research Institute (IFPRI) 2011;3. 

[68] Shamshiri RR, Weltzien C, A. Hameed I, J. Yule I, E. Grift T, K. Bal-
asundram S et al. Research and development in agricultural robot-
ics: A perspective of digital farming. International Journal of Agricu-
ltural and Biological Engineering 2018;11(4):1–11. 
 
 
 
 
 



 

Copyright © Fraunhofer IESE 2019 

[69] Lochner H, Beckmann C. Fachstufe Landwirt: Fachtheorie für 
pflanzliche Produktion: Planen, Führen, Verwerten und Vermarkten 
von Kulturen; tierische Produktion: Haltung, Fütterung, Zucht und 
Vermarkten von Nutztieren; Energieproduktion: Erzeugen und Ver-
markten regenerativer Energie. 9th ed. München, Münster-Hiltrup: 
BLV-Buchverl; Landwirtschaftsverl; 2012. 

[70] Herlitzius T, Grosa A, Bögel T. Bodenbearbeitungstechnik. Frerichs, 
Ludger (Hrsg.): Jahrbuch Agrartechnik 2018. Braunschweig: Institut 
für mobile Maschinen und Nutzfahrzeuge 2019;(30):1–11. 

[71] Geoprospectors. Landwirtschaft / Geoprospectors. [October 26, 
2019]; Available from: http://www.geoprospec-
tors.com/de/produkte-leistungen/landwirtschaft/. 

[72] Veris Technologies. Veris Technologies - The Sensors. [October 24, 
2019]; Available from: https://www.veristech.com/the-sensors. 

[73] Sharipov, G., Paraforos, D. & Griepentrog, H. W. Modeling and op-
timization of a no-till direct seeding machine. In: Ruckelshausen, 
A., Meyer-Aurich, A., Rath, T., Recke, G. & Theuvsen, B. (Hrsg.), In-
formatik in der Land-, Forst- und Ernährungswirtschaft 2016. Bonn: 
Gesellschaft für Informatik e.V. 2016:193–6. 

[74] Sylvester Badua, Ajay Sharda. DEVELOPMENT OF A MACHINE 
VISION SYSTEM FOR REAL-TIME MEASUREMENT OF SEED SPACING 
AND SEEDING DEPTH OF CORN. In: 2018 ASABE International 
Meeting: American Society of Agricultural and Biological Engineers; 
07292018. 

[75] Meinel T. Sätechnik. Frerichs, Ludger (Hrsg.): Jahrbuch Agrartechnik 
2018. Braunschweig: Institut für mobile Maschinen und Nutzfahr-
zeuge 2019;30:1–12. 

[76] Dot Technology Corp. DOT - Farming Reimagined. [October 26, 
2019]; Available from: https://seedotrun.com/. 

[77] Fendt A. Fendt Xaver | Fendt FutureFarm - Fendt. [October 24, 
2019]; Available from: https://www.fendt.com/de/xaver. 

[78] Ecorobotix. Bekämpfen sie das Unkraut auf intelligente Weise – E-
corobotix. [October 24, 2019]; Available from: https://www.ecoro-
botix.com/de/. 
 



 

Copyright © Fraunhofer IESE 2019 

[79] Lemken. Intelligente mechanische Unkrautbekämpfung: LEMKEN 
übernimmt Hacktechnikspezialisten Steketee. [October 29, 2019]; 
Available from: https://lemken.com/de/lemken-aktuell/news/de-
tail/detail/intelligente-mechanische-unkrautbekaempfung/. 

[80] Gaus C-C, Minßen T-F, Urso L-M, Witte T de, Wegener J. Mit auto-
nomen Landmaschinen zu neuen Pflanzenbausystemen; 2017. 

[81] Uppenkamp N. Mineralische Düngung. In Frerichs, Ludger (Hrsg.): 
Jahrbuch Agrartechnik 2018. Braunschweig: Institut für mobile Ma-
schinen und Nutzfahrzeuge 2019;30:1–6. 

[82] Blue River Technology. Blue River - See & Spray. [October 29, 
2019]; Available from: http://smartmachines.bluerivertechnol-
ogy.com/. 

[83] Böttinger S. Mähdrescher. In: Frerichs, Ludger (Hrsg.): Jahrbuch Ag-
rartechnik 2018. Braunschweig: Institut für mobile Maschinen und 
Nutzfahrzeuge 2019;30:1–17. 

 



 

Copyright © Fraunhofer IESE 2019 

Document Information 

Copyright 2019, Fraunhofer IESE. 
All rights reserved. No part of this publication may 
be reproduced, stored in a retrieval system, or 
transmitted, in any form or by any means includ-
ing, without limitation, photocopying, recording, 
or otherwise, without the prior written permission 
of the publisher. Written permission is not needed 
if this publication is distributed for non-commercial 
purposes. 

Title: Scouting the Autonomous 
Agricultural Machinery 
Market 

Date: November 5, 2019 
Report: IESE-041.19/E 
Status: Final 
Classification: Public 


