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This report summarizes the results of DynaSoS, a research pro-
ject funded by the German Federal Ministry of Education and 
Research (grant number: 01IS21104). The main outcome is a 
research roadmap for the software engineering of trustworthy 
dynamic systems of systems (dynaSoS). The research roadmap 
for engineering dynaSoS was derived from interviews, expert 
workshops, and a systematic literature study, performed along 
the four phases of the project: Conceptualization, Characteri-
zation, Classification of challenges, and Recommendations.

In phase 1, use cases and example dynaSoS in several smart 
scenarios were identified. Different scenarios highlight diffe-
rent aspects of dynaSoS. Visions such as smart mobility, smart 
farming, or smart energy refer to dynamic systems of systems 
that dynamically adapt their behavior to the current situation 

in order to minimize required resources, reduce costs, improve 
delivered services, or provide novel services. We also conside-
red cross-domain dynaSoS like smart cities that bring together 
sector-specific dynaSoS in certain area. Next, in phase 2, the 
use cases and example systems, together with the literature 
review, served as input for the identification of the core cha-
racteristics of dynaSoS.

In phase 3, related research challenges were collected and 
structured along three dimensions. The first dimension 
describes how large the dynaSoS is, whether it comprises 
other dynaSoS, and whether it belongs to a specific sector. 
The second dimension refers to established characteristics 
of systems of systems, such as the operational and manage-
rial independence of the constituent systems in a system of 

Executive Summary

Figure 1: High-Level view of the roadmap towards trustworthy dynaSoS
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systems. We added further characteristics to describe the role 
of Big Data, AI, and Autonomy in dynaSoS. The third dimen-
sion refers to engineering aspects such as activities, processes, 
or skills.

Finally, in phase 4, recommendations for further research were 
derived and structured along two dimensions. One dimen-
sion refers to the potential impact of the research direction. 
The other dimension indicates the time required to solve the 
challenge.

As shown in Figure 1, the roadmap proposes six main research 
topics that were derived during the course of the project: 

1. Reliable data management: DynaSoS are data-intensive 
systems, where different organizations may need to share 
information and where value is created using data from 
various sources. Reliable data management is a prerequisite, 
which is hard to achieve in practice. »Data management« 
is an overarching term that covers multiple data-related 
aspects, such as data architecture, data acquisition, data 
storing, data quality, data integration, and data governance.

2. Automated software engineering: DynaSoS compri-
se technical systems that are continuously developed by 
different organizations. Unexpected evolution of some 
software systems is common in this setting. The evolution 
of the many non-technical systems is often also hard to 
predict. Handling these unexpected evolutions of systems 
before unwanted emergent phenomena occur increases the 
demand for automated software engineering. This demand 
is already very high and was highlighted by many system 
engineers from industry.

3. Context-aware behavior: DynaSoS behave in a situa-
tion-specific way, which requires some form of context 
awareness. Context awareness is the main challenge for 
many autonomous systems, such as autonomous vehicles. 
It requires the system to understand the current situation 
so that it can anticipate future scenarios. The dynaSoS has 
to understand the current situation so that it can anticipate 
phenomena that emerge from the behavior of its systems. 

4. Engineering of safe and highly trustworthy dynaSoS: 
A dynaSoS typically provides essential services whose failure 
is highly critical. Assuring that these failures will not occur 
is challenging because the behavior emerges from complex 
interactions of evolving systems. Many novel safety approa-
ches can contribute to dealing with this issue, but they are 
not sufficient, even if harmonized and integrated. 

5. Value-based engineering of dynaSoS: A dynaSoS shall 
provide services so that it is in line with the current values 
of society. This requires that regulatory constraints and the 
economy support these values or even enforce them by pre-
scribing high-level targets or principles. Value-based engi-
neering refers to the challenge of getting from principles to 
practice. It is related to safety engineering because safety is 
a value. The difference is that it includes many values that 
are harder to grasp, such as sustainability, but where less 
rigor in assurance is demanded. 

6. Complexity, emergent phenomena, and resilience: A 
dynaSoS is a complex system that can generate emergent 
phenomena. Resilience refers to the property that required 
emergent phenomena are provided in spite of disturbances 
and that disturbances will not lead to unwanted emergent 
phenomena or a collapse of the dynaSoS. Complexity 
science provides many theories and tools that need to be 
enhanced and integrated into software engineering for 
dynaSoS.

This list presents main software engineering research topics for 
dynaSoS. We expect these results to be used to direct invest-
ments and further research in the field of dynaSoS and to 
connect the multidisciplinary scientific community around the 
topic.
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The digital transformation is advancing across 
industries, enabling products, processes, and 
business models that radically change the way 
we communicate, interact, and live together. 
Systems, players, and markets that were once 
isolated are being integrated by digital eco-
systems1. In this evolution, software-based 
systems are the central anchor through which 
value is added and desired system properties 
are realized.

Existing digital platforms and ecosystems 
already consist of complex networks of 
interconnected and globally distributed 
applications. Rapid advances in miniaturiza-
tion, storage capacity, intelligent information 
exchange, and processing enable the digita-
lization of more and more diverse objects. 
All visions of the future of technology – be 
it production as a service in Industry 4.0, 
autonomous transport systems in intelligent 
mobility, or cyber-physical systems in digital 
health – point to the fact that the future of 
software engineering will have to deal with 
systems that are increasingly large and diverse, 
complex in scale and dynamics, and involve 
more and more actors from different organi-
zations. In other words, the focus of software 
engineering will increasingly be on the design 
and development of dynamic, semi-autono-
mous Systems of Systems (dynaSoS).

Today, systems with characteristics similar 
to dynaSoS already pose technical challen-
ges, particularly in terms of managing their 
quality and complexity, and these challenges 
will intensify with the technical advances of 
and the growing demands on these systems. 
Moreover, because of their scale (national, 
transnational, or even global), these socio-
technical systems directly affect societies 
(think, for example, of the propagation of 
information – true or false – on social net-
works, or the management of a continental 
energy network) and the environment (such 
as the considerable impact cloud computing 
has on greenhouse gas emissions (Gröger, et 
al., 2021)). While there are challenges, there 
are also opportunities: These dynaSoS harbor 
the potential to solve the tensions between 
pressing ecological, social, and economic 
challenges; not least because of their ability to 
integrate information from various sources at 
large scales.

DynaSoS require an evolution of existing soft-
ware and systems engineering approaches 
to ensure their reliable and secure operation 
despite their high complexity. These approa-
ches must not only be able to handle the 
complex interactions of technical subsystems, 
but also the interactions between technology, 
people, and the environment. The publicly 

Introduction

This chapter opens the report motivating the existence of dynamic sys-
tems of systems – dynaSoS - and provides an overview of the rela-
tionship between its characteristics, research challenges, and research 
recommendations.

1 https://s.fhg.de/studie-digitale-oekosysteme

https://s.fhg.de/studie-digitale-oekosysteme
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funded project »DynaSoS« examined how the 
current state of software engineering must 
evolve to support a digital transformation in 
the area of systems-of-systems development. 
The goal of the project was to collect, consoli-
date, and present the current research challen-
ges regarding the development of dynaSoS in 
order to create a research roadmap containing 
recommendations and research directions.

The dimensions of dynaSoS, the research 
challenges, and the recommendations, 
together with their corresponding research 
directions, are the key elements in the project. 
Figure 2 provides an overview of how they 
are related to each other. The dimensions are 
used to cluster the research challenges, which 
in turn can be traced to recommendations as 
motivating challenges. In a similar vein, each 
recommendation is associated with a certain 
number of research directions.

Report structure

This report presents the results of the 
DynaSoS project. It is structured as follows: 
Chapter 2 presents an overview of the project 
phases. Chapter 3 highlights the different use 
cases and example systems that illustrate the 
kinds of systems we understand by dynaSoS. 
Chapter 4 introduces the dimensions we use 
to frame dynaSoS and their corresponding 
challenges. Chapter 5 presents the research 
challenges, clustered according to the dimen-
sions of dynaSoS. In Chapter 6, we provide 
six recommendations with corresponding 
research directions and discuss the research 
directions in the context of a bidimensional 
research roadmap. Finally, Chapter 7 conclu-
des the report by presenting its limitations 
and providing an outlook on the future of 
dynaSoS.
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Introduction

Figure 2. Traceability of challenge clusters, recommendations, and research directions.
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Project Overview

In this chapter, we provide an overview of the four project phases and 
explain how the output of each phase contributes to the subsequent ones.

The DynaSoS project was organized into four phases: (1) 
Conceptualization, (2) Characterization, (3) Classification of 
challenges, and (4) Recommendations. Figure 3 illustrates the 
phases, high-level activities, inputs, and outputs.

Phase 1: Conceptualization

In the first phase, we investigated scenarios for dynaSoS in six 
application domains (see Chapter 3). For each domain, the pro-
ject appointed a team of domain experts from Fraunhofer IESE 
and the Technical University of Kaiserslautern, Germany. In the 
activity »Identification of relevant use cases«, potential use 
cases were elicited by (a) reviewing relevant literature, such as 
roadmaps describing known problems, (b) drawing inspiration 
from implementation examples and scenarios, and (c) perfor-
ming interviews with experts from industry and academia. 
Figures 4, 5, 6, and 7 show the demographics of the partici-
pants – there were 97 individuals from 83 organizations.

The focus was on capturing the technological, societal, and 
economic implications of dynaSoS and the role of systems 
and software engineering regarding the use cases. The use 
cases provided a basis for identifying crucial aspects such as 
key stakeholders, possible business models, and variation 
points. All these aspects must be considered in the design and 
development of such systems. For example, a dynaSoS that is 
not economically viable or is not accepted by society will not 
be successful. These use cases supported the next activity, the 
description of the example systems that would be necessary to 
support the implementation of the use cases. These systems 
were selected based on their ability to demonstrate typical 
properties and challenges a dynaSoS will have in the respective 
domain. Each system described an innovative dynaSoS that is 
at least several years beyond the status quo, although existing 
implementations might help to demonstrate its feasibility and 
realistic expectations. Finally, the elaborated concepts were 
improved and expanded upon at a more granular level, inclu-
ding visualizations and models. The application areas were free 

to choose the appropriate format of these artifacts, which dif-
fered due to differences in the level of abstraction: While the 
Smart Mobility and Smart City & Region scenarios take a bird’s 
eye view of a metropolitan setting, Smart Farming and Smart 
Manufacturing consider a specific application or production 
site with selected machinery. 

Phase 2: Characterization

Both use cases and example system descriptions were used as 
input for the second phase, the characterization of dynaSoS. In 
this phase, we searched for the domain-independent charac-
teristics that distinguish dynaSoS from other systems, that is, 
a set of characteristics that are distinctive and therefore could 
help differentiate dynaSoS from other types of systems, mainly 
from traditional systems of systems (SoS). Furthermore, we 
want these characteristics to underline the dynamic properties 
that are found in these systems while keeping any overlap 
between these characteristics at a minimum.

For this purpose, we performed a series of internal workshops 
in which we iteratively explored and challenged properties 
that characterize dynaSoS. In addition to the results of the first 
project phase, we also took the literature into consideration, 
in particular the classical properties of SoS, to determine (1) 
the extent to which these support the description of dynaSoS, 
(2) what aspects regarding dynamism have not been defined 
yet, and (3) what other aspects are potentially missing. This 
phase produced a set of characteristics of dynaSoS (see Section 
»Dimension related to the dynaSoS characteristics«).

Phase 3: Classification of challenges

In the third phase, we investigated research challenges associa-
ted with dynaSoS and classified them according to a classifica-
tion framework, which we refer to as a research architecture. 
The characteristics of dynaSoS identified in phase 2, together 
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with categorizations concerning the scope and the engineering 
of dynaSoS, provided the three dimensions of the framework. 
They aimed at classifying challenges related to the enginee-
ring of dynaSoS. The framework was developed and debated 
through internal workshops at Fraunhofer IESE and external 
workshops with the participation of expert academics in the 
field from different research institutions and universities in 
Germany (see demographics of the participants in Figures 8 
and 9). 

With respect to the concrete research challenges, we used a 
two-fold search strategy. On the one hand, we reviewed the 
literature covering the research challenges for dynaSoS-related 
systems such as cyber-physical systems, IoT-based systems, 
adaptive systems, complex systems, and autonomous systems. 
We extracted more than 240 challenges from 91 papers (see 
visual depiction of the core aspects of the literature review in 
Figure 10). On the other hand, we elicited further challenges 
in the aforementioned internal and external workshops. After 
identifying, prioritizing, and clustering them, we organized 

them according to the dimensions of the research architecture.

Phase 4: Recommendations

Finally, we derived research recommendations to address the 
prominent challenges to engineering dynaSoS. Each recom-
mendation relates to some challenges previously identified and 
is accompanied by a set of potential research directions that 
can be pursued to fulfill the recommendation.

Summary

The project DynaSoS was organized into four phases: Con-
ceptualization, Characterization, Classification of challenges, 
and Recommendations, which were briefly described in this 
chapter. In the next chapter, we will present the outcomes of 
the first phase: the use cases and example systems we defined 
to help identify the characteristics of dynaSoS.

Germany
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Sweden

Switzerland

Estonia

Singapore

The Netherlands

72

3

3

2

1

1

1

Figure 3. Project phases, high-level activities, input, and output.

Figure 4. Frequency of organizations per country (N=83 organizations).
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Figure 6. Frequency of role per organization type (N=97 individuals).

Figure 7. Frequency of participants per application domain (N=97 individuals).
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Figure 10. Visual depiction of the literature review regarding challenges in dynamic systems of systems.
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Use cases and example systems

In this chapter, we present the use cases that we created for six application 
areas of dynaSoS and their corresponding example systems. Furthermo-
re, we also provide a transversal analysis of dynaSoS across the different 
domains.

Motivation for conceptualization work

Envisioning systems that are not yet in place – such as dyna-
SoS – requires people to imagine an innovative future before 
research challenges and recommendations can be proposed for 
them. Because the vision of dynaSoS is years beyond the status 
quo, abstract concepts such as autonomous, dynamic, reliable, 
and domain-agnostic systems are difficult to grasp. Individuals 
tasked with designing this vision need tangible examples to 
be able to understand the subject matter in depth, justify the 
benefits of dynaSoS, and determine their feasibility. Without 
referring to specific instances, it is also difficult to communica-
te these aspects to the public.

As a result, a significant portion of the project was dedicated 
to identifying relevant use cases and describing representa-
tive example systems. These activities made the concept of 
dynaSoS tangible. To increase the chance that the findings of 
DynaSoS can be extrapolated to other domains, we conside-
red six application areas where dynaSoS are expected to play 
a crucial role in the foreseeable future: Smart Farming, Smart 
Manufacturing, Smart Mobility, Smart Healthcare, Smart 
Energy, and Smart City & Region. This provided the necessary 
depth to identify and explicitly consider important domain-
specific properties. The six use cases we defined were publis-
hed as a whitepaper (Groen, et al., 2022), and four example 
systems were presented in a blog entry on the DynaSoS project 
website2. 

2 https://dynasos.de/news/

https://dynasos.de/news/
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In the conceptualization phase, we essentially translated the 
abstract visions into realistic scenarios in a given application 
context. This way, the scenarios help practitioners and resear-
chers understand what the contributions of different dynaSoS 
(use cases) might reasonably be, and what those systems could 
look like from a technical perspective (example systems). Furt-
hermore, the scenarios provided an indispensable discussion 
basis to envision those systems when composing and deriving 
the requirements, research architectures, research challenges, 
and recommendations regarding dynaSoS. A better unders-
tanding of the concept helped us to estimate the degree of 
automation, the ways these systems are interconnected, and 
the potential for innovative technologies.

While the use cases focused on the challenges that needed 
to be solved, the example systems illustrated how dynaSoS 
could practically solve or mitigate some of the urgent prob-
lems. Moreover, the use cases allowed us to investigate their 
economic advantage in highly regulated domains as well as 
their effect on increased compliance with the standards and 
regulations that cannot be attained by the state of the art.

Overview of application areas

The application areas provided the following use cases and 
example systems:

Smart Farming

Among the many shifts towards Digital Farming, crop protecti-
on is an important building block for food production. The lack 
of technical interoperability between interfaces and dynamic 
coupling of systems currently prevents the vision of treating 
every plant on the field individually from being realized. The 
vision requires the Farm Management Information System, sen-
sors, autonomous agricultural vehicles, weather information 
systems, and other systems to exchange data. A dynaSoS can 
contribute to many things, including actively monitoring the 
application of crop protection products, preventing excess drift 
of pesticides to surrounding areas, detecting pests before they 
are perceptible by the human eye, and reacting accordingly. 
This requires high data quality in dimensions such as reliability, 
granularity, and timeliness. This vision was described in the use 
case »Reducing goal conflicts in the sustainability triangle in 
crop protection through consistent digitalization«. 

The example system involves drones with sensors and satellites 
to determine the condition of the soil and the plants. Parts of 
the concept can also be transferred to other agricultural pro-
cesses like fertilization. The description of the example system 
was »Dynamic and connected: To what extent will future crop 
protection be digital?«3

3 https://dynasos.de/2022/09/30/dynamisch-und-vernetzt-wie-digital-wird-der-pflanzenschutz-in-zukunft-sein/

https://dynasos.de/2022/09/30/dynamisch-und-vernetzt-wie-digital-wird-der-pflanzenschutz-in-zukunft-
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4 https://dynasos.de/2022/10/14/dynamisch-rekonfigurierbare-produktion-mittels-dynamischer-systems-of-systems-vorgestellt-anhand-eines-beispiels/

5 https://dynasos.de/2022/10/07/smarte-lieferzonen-als-dynamisches-system-of-systems/

Smart Manufacturing 

Production lines are typically configured manually in order 
to be statically assigned to one specific production asset. By 
introducing technology that allows a production line to be 
dynamically reconfigured to a different production asset, 
costly shutdowns of the production line for reconfiguration 
purposes can be avoided. This vision was described in the use 
case »Dynamically reconfigurable production through virtual 
production lines«4. 

The example system, named »Dynamically reconfigurable 
production using dynamic systems-of-systems demonstrated 
with an example«, demonstrates how a Manufacturing Execut-
ion System (MES) performs production planning using virtual 
production lines. This planning not only improves the static 
assignment of production assets, but can dynamically share 
production plans and assets with other digital production 
lines to maximize efficiency. Part of the dynamic adaptivity of 
SoS relies on systems to describe their capabilities and skills to 
other systems. This enables the MES to orchestrate the systems 
independent of a device’s manufacturer or type by comparing 
these systems, conducting feasibility checks, and assigning 
production tasks. Flexibility of the shop floor can, for example, 
be promoted through flexible transportation systems such as 
Automated Guided Vehicles, Autonomous Mobile Robots, or 
autonomous forklifts.

Smart Mobility 

Urban mobility is associated with pollution, stress, and costs, 
which can be reduced by improved traffic flow. Parcel delivery 
greatly benefits from curbside management solutions, such as 
dynamic assignment of loading zones. A dynaSoS for mobi-
lity relies on high interdependence and dynamic coupling to 
operate within the continuously changing traffic flow. If this is 
achieved, it can contribute to reduced emissions and improved 
quality of life in the city. This vision was described in the use 
case »Dynamic delivery zones for optimized inner-city goods 
and delivery traffic«. 

The example system »DynaZone«, described in the article 
»Smart delivery zones as a dynamic system-of-systems«5, pro-
poses monitoring smart parking zones using sensors and assig-
ning priority tokens to reserve a zone. The system can assign 
zones for the predefined route of a parcel delivery vehicle and 
dynamically adapt to changes, such as delays or a DynaZone 

getting reassigned to an emergency response vehicle that has 
higher priority, while violators are fined to ascertain the conti-
nued availability of DynaZones.

Smart Healthcare 

ATMPs are concentrated therapeutic agents such as CAR-T 
cells, microbiota, or mRNA. They can be used for personal 
medicine in which a single patient receives an individually pro-
duced ATMP (e.g., for cancer treatment), and for vaccines. The 
manufacturing process of ATMPs is highly manual, resulting 
in time-consuming and cost-intensive production, and only a 
limited number of patients that can be treated with ATMPs. To 
achieve a flexible, scalable, and automatable production chain, 
the systems currently in use need to be able to interoperate 
properly, not just for orchestrating the production steps, but 
also for strict quality control, including measurements, sterility, 
bioreactive processes, and the associated automated data ana-
lysis. This vision was described in the use »Smart Production of 
Advanced Therapy Medicinal Products (ATMP)«. Because the 
concepts for automating ATMP production follow the princi-
ples of Industry 4.0, this use case is considered a special instan-
ce of the example system of Smart Manufacturing.

Smart Energy 

Organizing the energy grid into small and local energy cells 
supports the increased demand for flexibility while the grid 
is becoming more complex due to the growing number of 
energy consumers, generators (some of which are regenerative 
and volatile), and storage options. Using AI, these cells can 
autonomously balance their production and consumption. In 
essence, the dynaSoS performs »energy cell management« – 
compensating for energy surpluses and deficits at higher-level 
cells and converting the energy into different voltages. This 
vision was described in the use case »A connected cellular 
energy system for complexity control at a granular level«. 
Because the energy grid is a part of the infrastructure, most 
visibly that of urban areas, this use case is considered part of 
the example system of Smart City & Region.

https://dynasos.de/2022/10/14/dynamisch-rekonfigurierbare-produktion-mittels-dynamischer-systems-of-
https://dynasos.de/2022/10/07/smarte-lieferzonen-als-dynamisches-system-of-systems/
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Factors such as urbanization, demographic and climatic 
changes, and people‘s habits influence the demand for 
simultaneous use of space, constraints on the use of resources 
(water, energy, money, skills), and the possibilities for imple-
menting climate protection and adaptation measures in urban 
environments. One of the current challenges facing experts 
in the field is the ability to acquire real-time information of 
sufficient quality to support decision-making regarding the 
organization and development of urban areas. More futuristic 
approaches explore the possibility of multi-functional systems 
(e.g., connected and adaptive blue-green infrastructure) that 
adapt to the needs and constraints of cities (e.g., rainwater 
harvesting umbrellas, vertical gardens and living moss walls, 
temporary and mobile forests6). This vision was described in 
the use case »Self-driving trees: Blue-green infrastructure that 
adapts to a city’s needs«. The example system described in 
the article »Urban sustainability through dynamic systems of 
systems«7 illustrates how a dynaSoS approach could potentially 
help by making blue-green infrastructure more adaptable and 
connected.

Analysis of cross-cutting aspects

In order to identify dependencies between the application 
areas, we iteratively performed a cross-cutting analysis. This 
analysis aimed to steer and align the selection of use cases to 
fulfill three objectives: 

1. Aligning the use cases with the notions of SoS that exist in 
S&SE; 

2. ensuring that different kinds of SoS are considered; for 
instance, we wanted to make sure that not all use cases 
deal with swarms of robots because large-scale dynaSoS 
like intelligent traffic systems or smart grids are likely to face 
different kinds of challenges; 

3. making sure that domain experts have S&SE challenges in 
mind, meaning that they should provide illustrative example 
use cases of their application domain that are sufficiently 
profound to address these challenges.

To perform the analysis, a cross-sectional team with expertise 
in SoSE conducted workshops with experts from the respective 
domains. An important activity involved the consolidation and 
uniformization of definitions within the project, and the achie-
vement of a common understanding of dynaSoS and SoS. 

Next, we discussed key aspects of dynaSoS, such as the 
importance of AI, the manifestation of dynamic coupling bet-
ween the constituent systems, and the ways in which virtua-
lization of the systems adds value. These aspects were found 
to manifest themselves differently in the different application 
domains. The cross-cutting analysis helped to sharpen the 
common scope of the domains. For example, virtualization 
has played a major role in Smart Manufacturing ever since the 
rise of Industry 4.0. For Smart Farming, on the other hand, it 
is a new challenge, as not only agricultural machines but also 
natural systems may be transformed into Digital Twins within 
a dynaSoS. Aspects such as safety are particularly relevant 
in areas where an increased risk of physical injury is to be 
expected. 

The cross-cutting analysis demonstrated that further develop-
ment of systems engineering (SoSE) must be considered as a 
major research aspect. SoSE builds on the domain of traditio-
nal SE. It helps to cope with the high complexity of system net-
works and to understand dependencies. So far, in the domains 
considered, only a few SoSE methods have been applied, such 
as (Mennenga, et al., 2020). To close this research gap, we 
investigated the current challenges in SoSE through an inter-
view study resulting in 36 clusters of statements. These were 
then prioritized by importance and the potential for research 
to contribute to a solution. The investigation resulted in 13 
challenges for the realization of dynaSoS, which were consoli-
dated in the final results (Balduf, et al., 2022).

Summary

We elaborated the use cases and example systems in detail to 
make sure we attained the highest possible quality in pain-
ting a meaningful and robust picture of dynaSoS for different 
application areas. In turn, the use cases and example systems 
support the identification and derivation of typical characteris-
tics of dynaSoS. The characterization of dynaSoS is the focus 
of the next chapter.

6 https://arcadia.frl/de/projecten/bosk/

7 https://dynasos.de/2022/11/29/nachhaltigkeit-in-urbanen-raumen-durch-dynamische-systeme-der-systeme/

https://arcadia.frl/de/projecten/bosk/
https://dynasos.de/2022/11/29/nachhaltigkeit-in-urbanen-raumen-durch-dynamische-systeme-der-systeme/
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Motivation

The first phase of the project involved gathering evidence on 
examples of forward-looking software systems. The second 
phase of the project aimed to consolidate this material and 
develop a framework to help define the characteristics of 
dynaSoS, reflect on the evolution of current software sys-
tems, and systematically organize research challenges related 
to dynaSoS. This framework is called a research architecture 
and consists of three core aspects: scope, characteristics, and 
engineering, each of which has different dimensions. Each 
aspect and its dimensions are described in more detail in the 
following sections. An overview of the research architecture is 
given in Figure 11.

Dimension related to scope of dynaSoS

DynaSoS can have completely different scales. Consider, 
for instance, a few collaborative robots in a factory versus a 
complete smart city or a global supply network. The scale has 
an impact on the engineering challenges and is illustrated in 
Figure 12. On the left of Figure 12, one can see some colla-
borating robots and drones that together form an SoS. The 
robots and the drones are the constituent systems (CS) of the 
SoS. If none of the constituent systems in an SoS is an SoS 
itself, we call the SoS atomic. Otherwise, we call it hierar-
chical and refer to hierarchy levels for the depth of its nested 
structure. 

Dimensions of dynaSoS

In this chapter, we introduce the research architecture of dynaSoS, a classifi-
cation framework we used to characterize these systems.

Figure 11. Overview of the three dimensions in the research architecture
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A second aspect is whether an SoS is limited to a single 
domain or not. If an SoS belongs to a single application 
domain such as mobility or energy, we call it vertical. Other-
wise, we call it horizontal. 

A third aspect concerns the geographic distribution. To descri-
be this aspect, we use terms such as local, regional, natio-
nal, supranational, and global.

The three aspects are loosely related to each other. Atomic SoS 
tend to be local and vertical. Hierarchical SoS can be local and 
vertical, but the higher the hierarchy level, the more likely the 
SoS is horizontal and the more likely it has a wider geogra-
phic distribution. According to these loose dependencies, 
we roughly distinguish between four kinds of SoS, which are 
illustrated in Figure 12 and described in the following.

Small vertical atomic dynaSoS: Small, atomic, vertical dyna-
SoS are some (autonomous) robots, drones, or other machines 
that collaborate to implement a domain-specific task. In doing 
so, they can dynamically adapt to various context conditions. 
This dynamism is often enabled by AI and not considered in 
conventional SoS. 

For instance, a swarm of field robots may collaborate when 
weeding. The CS of these SoS might be developed from 
scratch because they did not previously exist. For instance, a 
farmer may have only conventional agricultural machinery but 
no field robots that are able to collaborate. A manufacturer 
of agricultural machinery will likely develop collaborative field 
robots independently from existing conventional agricultural 
machinery because the latter have no collaboration capabili-
ties. It is thus rather a development from scratch than evolutio-
nary development. Furthermore, the manufacturer might do 

this without considering collaboration with field robots from 
other manufacturers. This means that the SoS characteristic 
»managerial independence« might not be fulfilled. 

Vertical hierarchical dynaSoS: A vertical hierarchical dyna-
SoS involves various systems (including SoS) from the same 
vertical. It collects information from its CS and dynamically 
influences their behavior. 

For instance, an Agricultural Data Space (ADS) may collect 
information to decide when it is time for weeding or irrigation. 
Based on this information, it tells weeding robots and irrigation 
robots how to do their job. The ADS and all the systems that 
are connected to it form a vertical hierarchical dynaSoS. Similar 
data spaces or platforms are envisioned in other verticals. For 
instance, the vision of shared multi-modal mobility requires 
all means of transportation to be connected to platforms that 
organize the matching between mobility demands and offers. 
A smart grid requires a platform that organizes the matching 
between flexibility demands and offers. 

The basis for these dynaSoS is more and/or better information 
and communication technology (ICT). Existing SoS in various 
verticals are transformed by introducing ICT and by using the 
information to dynamically control and adapt processes in 
these verticals. Often, a lot of information needs to be proces-
sed in a very short timeframe. This rapid processing typically 
goes beyond human skills and motivates the application of 
technology, including AI-based control or AI-based recommen-
dations. Thus, ICT and AI are enablers for the transformation 
from SoS to dynaSoS. ICT and AI were already known when 
Maier introduced the SoS characteristics in 1998, but the tech-
nological possibilities have grown tremendously since then. 
Moreover, there is increasing awareness and political pressure 



20

Dimensions of dynaSoS

that existing SoS in domains such as energy, mobility, and agri-
culture, to name but a few, have to be transformed in order to 
achieve sustainability objectives (Niestroy, et al., 2020). 

Horizontal hierarchical dynaSoS: A horizontal hierarchical 
dynaSoS involves various systems (including SoS) from different 
verticals. It collects information from its CS and dynamically 
influences their behavior. 

A prominent example is a smart city that integrates a smart 
energy dynaSoS and a smart mobility dynaSoS. Another exam-
ple is a food supply chain that dynamically adapts how goods 
are transported depending on the current prices for possible 
transportation means. It involves systems from smart farming, 
smart manufacturing, and smart logistics.

Large holistic dynaSoS: The attributes large and holistic refer 
to sustainability. Following popular definitions of sustainabi-
lity, we consider it something as holistic if it includes at least 
ecological, social, and economic dimensions. Furthermore, we 
consider it as something that refers to planetary boundaries 
(Rockström, et al., 2009). Consequently, engineering sustaina-
bility requires considering the entire planet, define goals at this 
level, and break them down to so that they can be allocated to 
something, that is, to large-scale dynaSoS. 

A prominent example of engineering sustainability at a global 
scale is given by the 17 UN Sustainability Development Goals 

(SDG). These global objectives can be broken down into supra-
national objectives. For instance, the European Commission 
addresses the SDGs with the European Green Deal and other 
concepts (EU Commission, 2020). These objectives are further 
broken down to nations and verticals such as energy, trans-
portation, production, and agriculture. Establishing reasonable 
global goals and breaking them down in a reasonable manner 
requires analyzing the interaction between biological/ecologi-
cal systems, social/economic/political systems, and technical 
systems. These systems are loosely coupled, geographically 
distributed, evolve permanently, and generate emergent 
behavior. Furthermore, the interaction between the systems 
is of a dynamic kind, as described in (Scoones, et al., 2007): 
»‘Dynamics’ refers to the patterns of complexity, interaction 
(and associated pathways) observed in the behavior over time 
of social, technological and environmental systems«. The right 
part of Figure 12 illustrates the interaction between biological/
ecological systems, social/economic/political systems, and the 
»mediating role of technology in altering and being altered by 
natural and social-political systems« (Scoones, et al., 2007).

Dimension related to the dynaSoS characteristics 

We base our definition of the characteristics of dynaSoS on 
previous work in the domain of SoS. The literature on SoS 
usually defines five major characteristics: managerial indepen-
dence, operational independence, evolutionary development, 

Figure 12. Illustration of different scopes of dynaSoS
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geographic distribution, and emergent behavior (Maier, 1998; 
Gorod, et al., 2008). We extended and reorganized these 
initial five SoS characteristics into dynaSoS characteristics. The 
motivation comes from the increased usage and application of 
AI, autonomous systems, Big Data, and data science. In total, 
six categories were chosen: 

Heterogeneous Open Systems (Managerial Independence & 
Operational Independence)
Continuously Improved & Innovation-Driven (Evolutionary 
Development)
Complex Systems (Emergent Behavior)
Distributed Systems (Geographic Distribution)
Data-Intensive Systems
AI-based Autonomy of Constituent Systems 

These categories were chosen because they give rise to 
challenges that do not necessarily overlap with each other but 
cover the full range of dynaSoS issues.

Heterogeneous Open Systems (Managerial Indepen-
dence & Operational Independence): DynaSoS are com-
posed of systems that operate independently and are often 
managed by different organizations. This typically leads to 
heterogeneity on multiple levels. On the technological level, 

different hardware and software technologies may need to 
interact. On the organizational level, different parties may have 
to agree on common goals and to synchronize their processes 
while pursuing their particulars goals, which may not always 
converge on the overarching goal of the system of systems 
to which they belong. An important property is operational 
independence. This property implies that any constituent 
system that is part of an SoS can be operated independent of 
the others and would still work if the SoS was disassembled. 
Operational independence contributes dynamics because a 
constituent system is not bound to an SoS. It is loosely coupled 
and can also contribute to other SoS with its capabilities. It 
also implies that the constituent systems have an (open) inter-
face for collaboration. Managerial independence is a related 
characteristic of an SoS. It means that constituent systems in 
an SoS are managed independently and their owners may be 
evolving the systems to meet their own needs. Managerial 
independence is not a technical characteristic but a major 
cause of many systemic non-technical issues that hinder inter-
operability and lead to heterogeneous systems. Furthermore, 
the interfaces of constituent systems from different verticals 
are likely not interoperable. Together, these characteristics 
relate to the software-related research around open and hete-
rogeneous systems as well as related interoperability issues.
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Continuously Improved & Innovation-Driven Systems 
(Evolutionary Development): DynaSoS are not only 
developed and managed by different organizations, but also 
continuously enhanced. Novel features are constantly shipped 
into production, and novel systems need to be integrated and 
tested, whereas older systems may be retired. In that sense, 
the development of dynaSoS can be seen as a continuous and 
evolutionary process. Consequently, a dynaSoS will evolve 
incrementally rather than being ‘delivered’, as normally envisio-
ned in a single system development or acquisition. Considering 
continuous software engineering, the timeframe between 
incremental steps can be very short. 

Distributed Systems (Geographic Distribution): Like all 
SoS, dynaSoS are inherently distributed systems. They are not 
only developed by different entities, but the constituent sub-
systems may also be physically located in different places and 
interconnected through communication networks. In many 
cases, the location of the cyber-physical constituent systems 
with their execution platforms may change as they are mobile. 
Another aspect is the dynamic allocation of software functions 
to execution platforms. The characteristic »geographic dis-
tribution« can lead to various regulatory challenges. However, 
related research challenges rather address regulatory science 
than software engineering/research. Geographic distribution 
implies that there is potential for dynamic allocation of soft-
ware functions to execution platforms, and opens up new 
opportunities for efficiency. This and other topics of distribu-
ted systems are more relevant from a software engineering/
research perspective. Research on distributed systems has a 
long tradition and forms a research field on its own.

AI-based Autonomy: DynaSoS include constituent systems 
that act autonomously. This means that they are not control-
led or operated by a human operator. Therefore, they have to 
sense and understand the environment. Based on this context 
awareness, which can also include anticipation of future sce-
narios, they make decisions and act accordingly. Depending on 
the degree of autonomy, there is no human supervisor, or the 
human is only partially in the loop. In contrast to conventional 
automation, autonomy comes with the notion of a program-
med-self because dynaSoS act in a very situation-specific way, 
and even designers can often not explain upfront how the 
systems will behave in particular situations. A typical reason for 
the latter black-box behavior is the use of AI. Context awaren-
ess is often the key capability needed in order to react properly 
to operational situations. AI-based autonomy is one aspect 
that characterizes the difference between SoS and dynaSoS. 

Data-Intensive Systems: Another aspect is that dynaSoS are 
data-intensive systems. Kleppmann defines an application as 
data-intensive »if data is its primary challenge – the quantity 
of data, the complexity of data, or the speed at which it is 
changing – as opposed to compute-intensive, where CPU 

cycles are the bottleneck« (Kleppman, 2017). This is equiva-
lent to the concept of Big Data. In simple terms, Big Data is a 
situation that occurs when conventional approaches to data 
processing (i.e., moving data from storage to the main com-
puter memory for processing, and then moving the results to 
storage) become virtually unfeasible or too expensive. Big Data 
can occur because the amount of data is simply too large to be 
processed by the computer at hand. It can also occur because 
the speed at which the data must be processed is too deman-
ding (Laney, 2001) (Das, 2020). 

Complex Systems (Emergent Behavior): Emergence occurs 
when a system is observed to have properties that its consti-
tuent parts do not have on their own. Such emergent proper-
ties or behaviors arise from interactions between constituent 
systems. In addition, an emergent phenomenon affects its 
constituents: There is a feedback loop between the whole and 
its parts (Siegenfeld, et al., 2020; Parrend, et al., 2022). At least 
two levels of abstraction are needed to see, understand, and 
control emergent phenomena: the micro level, which describes 
the components, and the macro level, which describes the 
system as a whole.

A traffic jam (e.g., on a motorway) is a simple example of 
emergent phenomena. The cars are the micro-level com-
ponents. The traffic jam is the emergent phenomenon that 
happens at the macro level. A traffic jam can occur when 
cars interact and slow down, e.g., because of merging lanes 
or an accident. A traffic jam is a phenomenon with its own 
dynamics. It flows in the opposite direction of the cars and 
can spread in space (some can grow to several kilometers in 
length) and in time (sometimes even when the source of the 
slowdown is no longer present). Incoming cars are also affec-
ted by the traffic jam: They also have to slow down. 

Some emergent phenomena are desirable, while others are 
unwanted. For instance, an intelligent traffic management 
system may generate emergent behavior that optimizes traffic 
flow, but other phenomena may lead to a traffic jam. 

Dimension related to the engineering of dynaSoS

Over the years, software engineering tasks, processes, and 
methods have co-evolved with the type and scale of the soft-
ware systems being engineered (Booch, 2018). For example, 
the recent increase in the use of AI-based software systems 
has raised new challenges for software engineering, and 
both technical (e.g., data version control, feature stores) and 
non-technical (ML-Ops, data and AI governance strategies) 
solutions are currently emerging (Martinez-Fernández, et al., 
2022). The life cycle of software systems and the correspon-
ding software engineering activities will continue to evolve in 
response to changes in the scale and complexity of software 
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systems, as well as in response to the societal, economic, and 
environmental constraints (like moving toward a circular eco-
nomy) that will apply to these systems.

Engineering Philosophies, Culture, and People: As 
digitalization and software continue to affect all domains, the 
demand for software engineering competencies will continue 
to grow. Furthermore, the scale and complexity of the systems 
being designed is also changing the set of skills software 
engineers need to acquire (think of data privacy, algorithmic 
fairness). For instance, the last two decades have seen the 
emergence and adoption of philosophies such as agile, chaos 
engineering, Site Reliability Engineering, or DevOps, which 
have been fueled by existing software engineering challenges 
and ideas from manufacturing practices or complex systems 
sciences, and are now spreading to other domains (e.g., 
agile administration). We foresee that the evolution toward 
cross-functional, transdisciplinary, and more diverse teams 
will continue, including more socio-technical and environ-
mental competencies. This is because dynaSoS imply even 
more collaboration and communication between organizations 
having different, sometimes even conflicting goals, strategies, 
cultures, and processes. 

Software engineering lifecycle, activities, and proces-
ses: As mentioned above, software engineering co-evolves 
with the software systems being developed. Although it is 
difficult to imagine what novel software engineering activities 

will happen in the future, we can foresee that systems such 
as dynaSoS will require novel software engineering tasks. The 
current state-of-the-art descriptions of software engineering 
activities, such as the SWEBOK8 categories and continuous 
software engineering (Bosch, 2014; Farley, 2022; Antonino, et 
al., 2022; Humble, et al., 2010; Klotins, et al., 2022; Fitzgerald, 
et al., 2017), provide an overview of software activities as of 
today. As systems evolve toward dynaSoS, there will be the 
need to adapt and reinvent some software activities (see, for 
instance, the specific changes brought on by the use of AI 
for requirements engineering (Scharinger, et al., 2022) and 
for testing (Zhang, et al., 2022), or the recent advances in 
code generation through large deep learning models such as 
OpenAI Codex (Puryear, et al., 2022)).

Summary

The research architecture with its three core dimensions Scope, 
Characteristics, and Engineering, together with their asso-
ciated categories, provides a framework for navigating the 
universe of dynaSoS. This framework formed the basis for the 
classification of the research challenges presented in the next 
chapter.

8 http://swebokwiki.org/Main_Page

http://swebokwiki.org/Main_Page
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Humanity currently faces environmental, sanitary, and geopoli-
tical crises that compel us to consider the implications of soft-
ware systems and their potential to sustainably solve (or help 
solve) these crises. In a less technical sense, they also force us 
to reconsider the way we think and act. Indeed, the evolution 
of software systems by scale is accompanied by changes in 
how we manage projects (e.g., by introducing more agility, 
more cross-functional teams; see DevOps and VUCA approa-
ches), and distribute and evaluate software (e.g., by using 
more open-source solutions, automating testing and deploy-
ment, or evaluating the fairness of automated decisions). On 
the one hand, dynaSoS can be one of the keys to implemen-
ting solutions to present and future crises. On the other hand, 
engineering dynaSoS is challenging, and failures may have 
catastrophic consequences on society and the environment. In 
the following, we present the challenges related to dynaSoS 
that we derived from the literature and several workshops. 
These challenges were classified according to the dimensions 
presented in the previous chapter.

Scope

The first dimension distinguishes between different types of 
dynaSoS ranging from small, atomic dynaSoS like a swarm of 
robots to large-scale dynaSoS connecting various technical, 
social, ecological, political, and other kinds of systems around 

the globe (Peter, et al., 2014). The challenges depend a lot on 
the type of dynaSoS and the related engineering scopes. The 
scope of engineering for many dynaSoS is given by regulatory 
constraints and business cases. It is very complex to develop 
these laws in such as way that they will lead to a sustainable 
world (i.e., living within the planetary boundaries) (Niestroy, 
et al., 2020). The modeling and analysis of large-scale dyna-
SoS can help to cope with this complexity and to solve this 
interdisciplinary challenge involving regulatory science, comple-
xity science, sustainability science, and ethics. This may lead 
to a novel transdisciplinary role of S&SE that goes beyond the 
traditional transdisciplinary focus on mechanics, electronics, 
and software.

Defining government structures and drafting regulations is 
paramount in steering the evolution of large-scale SoS. Howe-
ver, regulations can only pinpoint a rough direction because 
it is neither possible nor reasonable to regulate everything 
in detail. This is especially true for the detailed behavior of 
constituent systems and the related emergent behavior of a 
dynaSoS. As the behavior of technical systems is implemented 
by means of software, software engineers can significantly 
influence the direction of the digital transformation. This leads 
to the challenges described in the following sections. Deve-
loping laws to amend regulatory constraints and economic 
conditions for business models goes beyond the scope of the 
DynaSoS project. 

Research Challenges

In this chapter, we list 24 research challenges for dynaSoS. These challenges 
were clustered according to the dimensions of the research architecture. 
While the dimensions »Scope« and »Engineering« provided one challenge 
cluster each, the dimension »Characteristics« contributed six clusters – one 
for each characteristic.
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Research Challenges

Value-based-engineering and environmental, societal 
impacts
It is challenging to bridge the gap from values of societies to 
practice in SE. Software-related design decisions can have a 
huge environmental and social impact (Schneider, et al., 2022). 
The growing trend toward connected objects, cloud compu-
ting, and increased digitalization opens up many opportuni-
ties for collecting relevant information for shaping the digital 
transformation of SoS and to engineer dynaSoS for a better 
world. It is necessary and challenging to understand and 
control the impact of technical systems on ecological systems, 
societies, and individuals. Safety science and safety enginee-
ring provide many approaches for dealing with safety risks, but 
these approaches are not sufficient when it comes to autono-
mous behavior of constituent systems, emergent behavior of 
dynaSoS, or other values like fairness or sustainability. Value-
based engineering as described in IEEE 7000 (IEEE Computer 
Society, 2021) already addresses some of these issues, but 
these aspects are still not a mainstream component in the SE 
curriculum (Casañ, et al., 2020). 

Resilience and potentially unknown impacts
History has shown that many technological risks were 
unknown until scaling up the technology led to severe 
consequences. Many dynaSoS are large-scale systems where 
scaling effects can be achieved very fast. Software updates can 
fundamentally change the behavior of constituent systems in 
dynaSoS. On the one hand, this makes it possible to instantly 
react to identified risks that were not foreseeable. On the 
other hand, this way of dealing with unknown unknowns 
affects the overall dynamics of the dynaSoS and may steer it 
towards tipping points. Performing risk management is only 
possible if risks are known. Instead, common approaches from 
security engineering to address unforeseen attacks may be 
more applicable. However, this kind of bug-fixing with respect 
to malicious faults is fundamentally different from controlling 
the interaction of technical constituent systems with other 
constituent systems in a dynaSoS. The technical constituent 
systems have to behave in a way that assures that the ove-
rall dynaSoS will remain in a state that is at a safe distance 
from any critical (tipping) points or conditions. For instance, 
flexibility management software in a smart grid has to protect 
the overall dynaSoS from power network overloads that would 
cause power outages.

Complexity, emergent phenomena and resilience 

DynaSoS are complex systems that may be confronted with 
emergent phenomena. The main challenge with emergent 
phenomena is that they are relatively difficult to predict. This is 
due to the fact that the number of possible interactions grows 
exponentially with the number of interconnected systems. It 

is therefore simply impossible to monitor all possible interac-
tions. In addition, the effect of interactions is often non-linear. 
This means that small changes can have large consequences 
(butterfly effect). The effect of an intervention may trigger a 
response at a different scale. It may take a long time for the 
effects to be noticed, or the effects may occur in a different 
system. Therefore, the effects of decisions made at the soft-
ware engineering level (during development or operation of 
dynaSoS) might not be seen and understood in time by those 
responsible.

Complex failures and unwanted emergent behaviors
Because constituent systems may interact in ways that are 
sometimes impossible to foresee, it is difficult for software 
engineers to find root causes and handle failures in complex 
systems. In his seminal book »The logic of failure« (Dörner, 
2003), Dietrich Dörner illustrates that, in order to make decisi-
ons about complex systems, people need the right mindset. In 
the domain of software engineering, complexity and emer-
gent phenomena have been acknowledged, and shifts in the 
way systems and software are engineered and operated are 
already taking place (Jamshidi, et al., 2018). The main point is 
that even if novel processes or development approaches are in 
place, failure management in complex systems remains a major 
challenge (Snafucatchers consortium, 2017). One of the main 
problems remaining is how to engineer emergent behavior 
that controls unwanted behaviors (such as safety or security 
risks) and how to monitor and react to emergent behaviors 
before they introduce inacceptable risks. 

Causality and causal inference in complex systems
In complex systems, isolating one element to study its behavior 
independent of the rest of the system and its interactions with 
other components is not effective. This is especially true when 
components adapt their behavior to their context. The major 
issue is that factors influencing the behavior of components 
might not be directly measurable. Assessing causal effects 
and finding root causes of problems in software systems is a 
long-standing problem, and many techniques and processes 
such as immutability, using a staging environment to test 
systems in conditions as close as possible to the real ones, 
A/B testing, and others have been developed to assess and 
improve software quality. In parallel, identifying causes and 
assessing causal effects in complex systems is a problem that 
research fields such as causal inference and causal discovery 
seek to address. These fields provide methods for identifying 
and evaluating causal effects even when the underlying data is 
not from randomized experiments or when confounding fac-
tors may not be measured. (Glymour, et al., 2019; MacKenzie, 
et al., 2018). While some causal inference methods have found 
their way into software engineering (Siebert 2022), determin-
ing the root cause of quality in complex software systems 
remains a challenging aspect.
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Assurance, complexity and emergent phenomena
Coping with complexity and engineering emergent behavior is 
already challenging if risks are moderate. In case of high risks, 
high confidence is needed that some very critical emergent 
phenomena will not occur, or that required behavior will 
always occur. This is challenging and probably not feasible with 
the traditional assurance approach according to ISO/IEC/IEEE 
15026. This approach assumes that we can collect enough 
evidences for building a strong argument for the claims to be 
assured. It is heavily applied in the context of safety in various 
domains and dates back to 1965 (cf. Figure 1 in (Rinehart, et 
al., 2017)). It is challenging to apply this approach to dynaSoS 
because the evidence that can be collected is generally not 
sufficient to build a strong argument. Many evidences can only 
be collected during operation. Furthermore, it is challenging to 
measure the strength of an argument. This is necessary in the 
context of certification because certification authorities and 
other stakeholders need to know under which conditions an 
argument is strong enough. 

Impact of scale and complexity on engineering tasks
Building complex software systems, such as digital ecosystems 
like Facebook, Twitter, etc., has forced software engineering 
practitioners to find solutions for dealing with complexity at 
both technical and organizational levels (Jamshidi, et al., 2018). 
A key lesson is that some organizations, such as Spotify (Smite, 
et al., 2019), Github (Burton, et al., 2017), or Valve (Möller, et 
al., 2021), have adopted a less hierarchical type of structure 
to manage complexity. These have been shown theoretically 
(Barabási, et al., 2016) to improve information flow and are 
thought to be one of the reasons why such organizations are 
better at engineering complex software. However, the ques-
tion of how the complexity of the system being built affects 
organizations, their processes, and their missions is far from 
being resolved (Kuusisto, 2017). 

AI-Based autonomy

The AI-based autonomy of constituent systems in a dynaSoS is 
challenged by the different types of uncertainty that surround 
their runtime operation, be it related to how the autonomy is 
engineered or to the environment where they (inter)act. The 
usage of AI techniques in safety-critical systems calls for risk 
assessment and assurance mechanisms. In addition, as a large 
number of contextual elements are expected to be available 
in smart scenarios, leveraging opportunities for the design 
of context-aware behavior is not trivial. It requires a proper 
understanding of the context at the constituent system level 
and at the dynaSoS level.

 

Uncertainty due to autonomous and intelligent 
components
Uncertainty is a challenge with several facets in dynaSoS. One 
is the nature of the solutions that implement the autonomy of 
each constituent system. Autonomous systems that use data-
driven software components can make their decisions based 
on an internal representation derived from data. Such systems 
have an implicit uncertainty about their functionalities (Kläs, et 
al., 2019). This uncertainty can stem from the type of decision 
model being used. Indeed, very complex decision models (such 
as deep neural networks) can, on the one hand, solve more 
complicated problems; on the other hand, they are sensitive 
to the problem of adversarial attacks, where a small change 
in their inputs can result in a drastic change in the output 
decision. The uncertainty can also stem from the data that was 
used to develop (or train) the internal decision model. When 
the data is not representative of the problem at hand, the 
learned decision model might not work well on unseen data 
points. Finally, the uncertainty can stem from the application 
scope of such systems, especially when the context changes 
or the internal goals are changed. An SoS that consists of 
multiple autonomous constituent systems must deal with the 
propagation of the uncertainty of the individual constituent 
systems to the entire SoS.

Uncertainty and changing operational environment
Uncertainty in dynaSoS also stems from the environments into 
which the constituent systems are inserted. These environ-
ments are open, which brings uncertainty that can range from 
technical issues (e.g., defects in physical devices) to organi-
zational issues (e.g., unexpected demand fluctuations in the 
processes these system support), not to mention scenarios 
where an actor is trying to disrupt the system behavior on 
purpose (e.g., security attacks) (Adedeji, et al., 2020; Tavčar, et 
al., 2018). The environment challenges the adaptation capabi-
lities of systems because it is hard to anticipate all adaptation 
scenarios at design time (Daun, et al., 2015), which makes not 
only the design of adaptation strategies a difficult task, but 
also the assurance of adaptation (Schmerl, et al., 2017), which 
is required in safety systems.

At the macro level, questions arise from possible unintended 
consequences caused by variations in the behavior of the 
individual constituent systems – for example, a particular cons-
tituent system that has been modified to improve its resilience 
(Uday, et al., 2015) – or even the modification of the current 
set of constituent systems in a dynaSoS – e.g., a new compo-
nent joining the system can lead to unpredictable or undesira-
ble behaviors (Tavčar, et al., 2018).

Design of context-aware behavior
The potential for implementing context-aware functionalities 
has increased as new and better sources are available. Sensors 
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are a typical example: They can provide systems with useful 
information about the context, including, for example, loca-
tion, weather, presence of an obstacle, distances, temperature, 
battery level. Contextual information is not limited to sensor 
outputs, though. A widely accepted definition of context 
comes from Dey (Dey, 2001): According to him, »[c]ontext is 
any information that can be used to characterize the situa-
tion of an entity. An entity is a person, place, or object that is 
considered relevant to the interaction between a user and an 
application, including the user and applications themselves«. 
Put like this, context can potentially be anything. Therefo-
re, contextual information can be obtained not only from 
sensors, but also from any source that may provide access to 
the situation of entities that are relevant for a usage scenario. 
An essential step is to have access to good-quality contextual 
data, which is not always the case. In the Internet of Things 
(IoT), for example, high-precision indoor positioning is chal-
lenging (Kim, 2018), as is the accumulation of adequate data, 
context factor discovery, and filtering of contextual information 
(Ahlawat, et al., 2021).

Once systems have access to the context sources, they can 
know the context. Then the question is how context can be 
used to implement context-aware functionalities, such as 
adaptations or recommendations. The design of context-aware 
behavior is challenging because in smart scenarios, there are 
so many contextual factors available to be taken into conside-
ration, that it is difficult to identify which of them are relevant 
for a certain task of interest, or how the individual contextual 
factors can be combined to describe a context-aware behavior 
(Falcão, et al., 2021).

Automated risk reasoning
A special aspect of context-aware behavior is the consideration 
of risks or possible harm scenarios (Feth, 2020). Risk is the 
combination of the likelihood of harm and the severity of that 
harm. It is challenging to formalize risks and measure them 
because of its subjective nature and the need for intersubjec-
tivity in algorithmic decision-making. Automated risk reaso-
ning has to be based on moral standards and raises questions 
related to the ethics of risk (Geisslinger, et al., 2021). Many 
approaches focus on the risks of a single autonomous system, 
like the collision risks of an autonomous vehicle. These approa-
ches are not sufficient for dealing with risks due to emergent 
phenomena of dynaSoS. 

Macro-level context awareness
While the design of context-aware behaviors aims at the auto-
nomy of the constituent systems, contextual factors can also 

arise from the very dynamics of these systems due to emergent 
phenomena. This means that certain relevant context sources 
cannot always be provided by a single primary context source, 
but are rather provided by a combination of contextual factors 
from different sources. Strictly speaking, this issue is not limi-
ted to dynaSoS; however, the situation becomes more challen-
ging in dynaSoS because of its openness: Constituent systems 
can join and leave without compromising the working of the 
dynaSoS, and these systems are heterogeneous. Consequently, 
the context sources provided by each constituent system may 
not be known in advance by the others. Nevertheless, to fully 
exploit the potential of context awareness, constituent systems 
should be able to understand the context that can only be 
described on the macro level of the dynaSoS. This raises ques-
tions such as who (if anyone) may be responsible for managing 
macro-level context in a dynaSoS, and how the macro-level 
context may affect the tasks being supported by the dynaSoS 
as a whole and by each of its constituent systems.

Assurance of AI and autonomy
Assurance mechanisms are used to check whether a system 
satisfies certain qualities of interest, such as safety and cor-
rectness. Constituent systems in a dynaSoS are autonomous 
due to the usage of AI and Big Data. These can, among other 
things, support the context awareness of these systems and 
subsequent self-adaptation. Implementing the assurance of 
self-adaptation has been considered an overarching challenge 
(Schmerl, et al., 2017), and there have been demands for the 
development of runtime assurance mechanisms (Schmerl, et 
al., 2017; Tavčar, et al., 2018). The design of runtime assurance 
processes for self-adaptive systems has not been sufficiently 
investigated though. Furthermore, under the assumption that 
we are able to perform runtime assurance, self-adaptation 
poses a question about the validity of the assurance cases 
when the context changes – in other words, reassurance 
must take place at runtime. The question is, which parts of an 
assurance case must be re-evaluated when there is a change in 
the context – be it the environment or the state of the system 
itself.

Heterogeneity and openness

Heterogeneity appears at different levels in dynaSoS. On a 
technical level, operational independence implies that the 
constituent systems might not rely upon the same techno-
logies. On an organizational level, managerial independence 
implies that the organizations themselves might not be inter-
operable (they might use different engineering processes, 
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have different legal frameworks, and follow different business 
strategies). Finding common languages and ways to interope-
rate is part of the digitalization journey, and we already see 
interoperability artifacts such as norms, standards, or reference 
architectures (like AUTOSAR9, RAMI 4.010, or the Smart Grids 
Architecture Model (SGAM)11) that help overcome heteroge-
neity issues. A challenge for dynaSoS is how to transfer this 
existing work either to new domains that have not yet had to 
deal with heterogeneity issues, or how to build on this existing 
work to deal with future heterogeneity issues that will arise 
when previously separate domains, organizations, or systems 
need to interact.

Openness appears in dynaSoS because the constituent systems 
can join and leave a dynaSoS. A dynaSoS has an open door 
for constituent systems that support the overall mission of the 
dynaSoS. Furthermore, constituent systems communicate with 
each other to support the overall mission of the dynaSoS. 

Interoperability for shared context awareness
Interoperability is a general challenge in software enginee-
ring that has different facets in different types of systems. In 
dynaSoS, one of these facets is how to make contextual data 
interoperable and provide constituent systems with shared 
context awareness, that is, with a common understanding of 
the context of a certain scenario. While constituent systems in 
a dynaSoS pursue their own individual goals, they also interact 
with each other to achieve the high-level goals of the dyna-
SoS. Such an interaction may take place directly – through the 
interfaces these systems expose to each other – or indirectly – 
through the ability of these systems to sense and recognize the 
other systems and their current state in an interaction scenario. 
Context plays a major role in the adaptation capabilities of the 
constituent systems, and as constituent systems are developed 
and operated independently, their abilities to sense and model 
the context into which they are inserted vary as well. As a 
consequence, different constituent systems that participate in 
a certain smart scenario may have different understandings of 
the surrounding context, which in turn may lead to poor or at 
least suboptimal collaboration and decision-making, in particu-
lar with respect to the high-level goals of the dynaSoS.

Heterogeneous constituent systems
Constituent systems in a dynaSoS are potentially heteroge-
neous in any technical dimension, including, for example, hard-
ware, software, networks, and protocols (Singh, et al., 2018; 
Younan, et al., 2020; Li, et al., 2019). One thing cuts across vir-
tually everything else though: data. Given the technical hetero-
geneity of constituent systems, the continuous exchange and 

integration of data with disparate quality are challenging. It is 
not trivial to propose, for example, mechanisms that can query 
data across different formats and structures (Diène, et al., 
2020). Ideas toward modeling and meta-modeling raise ques-
tions about the adequate level of abstraction of these models 
– in order to prevent both oversimplification and overenginee-
ring – and bring with them computational challenges related 
to efficiency when we talk about large models (Uday, et al., 
2015). As the details of each system are not or cannot be 
known in advance by the other systems, black-box integration 
via interface specifications is needed – which, in turn, poses a 
challenge for achieving interoperability (Liu, et al., 2020).

Another technical consequence of the heterogeneity of cons-
tituent systems is the problem of monitoring the high-level 
behavior of the SoS, which is, for example, observed in the IoT 
world due to the velocity, volume, and variety of IoT (Atlam, et 
al., 2017).

Impact of security issues
Security is frequently mentioned in the literature as major con-
cern for SoS (Tlili, et al., 2022; Ahmed, et al., 2019; Schranz, et 
al., 2021; Goli, et al., 2021; Chen, et al., 2016; Ali, et al., 2021; 
Nazish, et al., 2018; Badr, et al., 2021; Li, et al., 2019). There 
are different notions of security, so we will first clarify what 
we mean by security. The taxonomy of dependable and secure 
computing by Laprie (Avizienis, et al., 2004) proposes consi-
dering security as a combination of confidentiality, integrity, 
and availability. Furthermore, it introduces the term »malicious 
faults« for faults introduced by a human with the malicious 
objective of causing harm to the system. We here refer to the 
challenge of dealing with malicious faults. 

An attacker typically has many opportunities to attack a dyna-
SoS because many constituent systems can join a dynaSoS, 
and each of them can be subject to an attack. The constituent 
systems often communicate by exchanging information and 
their software is continuously being updated. These and other 
aspects lead to many opportunities for attacking a single 
constituent system. Dealing with all these possible attacks is 
challenging. Many attacks might be seen as not so severe from 
the local perspective of an operator of a constituent system, 
but they may have a severe impact from the global dynaSoS 
perspective, possibly generating emergent phenomena leading 
to severe losses. If the severity is really high, then we consider 
it as a safety issue. This means that we do not limit safety to 
loss of life, injury to humans, damage to property, etc.

9 https://www.autosar.org/

10 https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/rami40-an-introduction.html

11 https://energy.ec.europa.eu/smart-grid-reference-architecture_en

https://www.autosar.org/
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/rami40-an-introduction.html
https://energy.ec.europa.eu/smart-grid-reference-architecture_en
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Interoperability and integrity of exchanged information
In a dynaSoS, the constituent systems typically collaborate by 
exchanging information. This information is often truthful, that 
is, it may either be true or not. For instance, the information 
that the speed of a vehicle is not higher than a certain value X 
is truthful. If the information is used for making critical deci-
sions, then high confidence is needed that the information is 
actually true. The level of required confidence depends on the 
criticality of the decision. This means that the senders of infor-
mation have to somehow communicate the level of confidence 
so that the receivers can take this into account when making 
decisions or when deriving other pieces of information and 
related confidence information. Engineers also have to deal 
with this issue when they design a system where one compo-
nent sends critical information to another component. The dif-
ference is that the components are known, and the engineers 
can reason on whether the required level of confidence is 
provided or in which situations it is provided. In the safety-criti-
cal domain, this communication is supported by the concept of 
integrity levels. This is why we refer to the integrity of exchan-
ged information and not to confidence. There are domain-spe-
cific versions of integrity levels, like ASIL for automotive and 
AgPLr for agricultural machinery. This leads to interoperability 
challenges when components from different domains are put 
together. The IEEE P285112»Standard for functional safety data 
format for interoperability within the dependability lifecycle« is 
working on this issue. This is also an issue for horizontal dyna-
SoS, but the main issues are that the engineers of a constitu-
ent system do not know how the information provided is used 
and that the usage defines which assumptions for generating 
the information are relevant for the receiver. 

Distributed systems

Research on distributed systems or distributed computing 
deals with issues such as the tradeoff between running time 
and number of required computers, synchronization, byzan-
tine errors, consensus problems, self-stabilization, or dead-
locks. Distributed computing is also used in some constituent 
systems, even though a single computer would be possible, 
because it can be faster, more reliable, and/or more cost-effi-
cient. Considering a dynaSoS and the geographic distribution 
of its constituent systems, distributed computing is essen-
tial for using the flexibility to execute software on available 
hardware resources. This flexibility can be used to minimize 
the required hardware resources, energy consumption, error 
handling, and many other criteria. Real-time constraints limit 
this flexibility, but 5G and other technologies push these 
limits. Safety is also a limiting factor because it is hard to per-
form all necessary safety analyses and provide related safety 

guarantees if the execution of software is not straightforward 
but highly dynamic and optimized according to many criteria.

Assured dynamic software execution in distributed 
systems
Safety standards for single systems such as road vehicles or 
agricultural machinery provide guidance for dealing with 
failures of execution platforms for application software. The 
safety requirements for the execution platform depend on the 
criticality of the application software. Moreover, it needs to 
be assured that application software of lower criticality does 
not affect application software of higher criticality via shared 
resources for their execution. Fulfilling such requirements is 
challenging if approaches are applied that are common in 
distributed computing and cloud computing. For instance, con-
tainerization enables the deployment of multiple applications 
using the same operating system on a single virtual machine 
or server. If the applications have different levels of criticality, 
then it is challenging to assure freedom from interference 
requirements. On the other hand, these approaches enable the 
implementation of dynamic safety mechanisms. For instan-
ce, containerization can be used to run several copies of a 
safety-critical application and implement fault tolerance based 
on voting strategies. The number of replicas can be changed 
at runtime depending on the current criticality of the applica-
tion. This is a promising approach, but common cause failures 
need to be considered. The general research questions are as 
follows: Which conventional safety measures can be applied 
in the context of distributed computing and cloud computing? 
Which additional safety measures can be applied? How to 
demonstrate that all applied safety measures are at least equal-
ly effective as the conventional ones?

Continuous and innovation-driven development

Continuous and innovation-driven development is common 
in cloud-native and digital organizations (Ebert, et al., 2022). 
These approaches have been shown to improve the speed 
and quality of software systems. However, they are not silver 
bullets that can be applied overnight (Fitzgerald, et al., 2017; 
Ebert, et al., 2022). They are not common for safety-critical 
software embedded in vehicles or other physical products 
(Fayollas, et al., 2020). In that case, the market introduction 
of a product and changes after market introduction play 
an important role in terms of safety and liability. Laws and 
regulations define health and safety requirements that must 
be fulfilled prior to market introduction. The producer‘s liability 
obligation is excluded if the state of scientific and technical 
knowledge at the time the producer puts the product into cir-
culation was not such as to enable the defect to be discovered 

12 https://sagroups.ieee.org/2851/

https://sagroups.ieee.org/2851/
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(Bundesgesetzblatt, 1989). This may become problematic if 
the behavior of constituent systems is very situation-specific 
and the environment evolves. For instance, imagine that it was 
not reasonably foreseeable that people would wear masks 
when an autonomous system was put into circulation. This 
may affect the system behavior so that it becomes unsafe. 
Consequently, the behavior has to evolve with its environment. 
Continuous development of safety-critical products has this 
additional motivation but is particularly challenging because it 
is in conflict with established regulatory and certification fra-
meworks. Besides, the independent development lifecycles of 
constituent systems pose another challenge for the evolution 
of these systems.

Certification and continuous improvement
Certification is well established for assuring critical properties 
such as safety. Regulations and safety standards define safety 
requirements. Product manufacturers implement these safety 
requirements and certification authorities check their fulfill-
ment. If we consider dynaSoS, then several questions arise: 
Do we consider each technical system in the dynaSoS as a 
product, all technical systems together, or the complete dyna-
SoS including all non-technical elements? How to deal with the 
changing constituent systems that belong to a dynaSoS? How 
to deal with the evolution of non-technical systems? How to 
deal with the continuous improvement of technical systems? 
Only the last question is directly related to continuous enginee-
ring, but a holistic solution is required that answers all these 
questions together. This solution should support modularity 
so that manufacturers of technical systems can certify their 
system without knowing all possible dynaSoS to which their 
system may contribute in the future. Furthermore, this solution 
should support composability so that a certificate for the 
dynaSoS can be derived from the modular certificates. Certi-
fication authorities should be able to assess this mechanism 
for composition. Such visions are known as runtime certifica-
tion (Rushby, 2008), conditional safety certificates (Schneider, 
2014), or dynamic risk management (Schneider, et al., 2018). 
One challenge that makes it hard to realize them is how to 
align them with a regulatory framework or adapt the regulato-
ry framework. For instance, the European Machinery Directive 
defines that machinery can mean assemblies of machinery. 
This makes it possible to consider a fleet of robots as one 
product that can be certified. Further investigation is required 
to identify the limits for interpreting the generic definition of 
machinery. Can a complete factory or even several factories be 
considered as machinery? How flexible is the definition with 
respect to changing numbers and types of machinery? What 
changes with the new machinery regulation? Other challen-
ges relate to the technical implementation. So far, there are 
generic concepts and related implementations. How to tailor 
them to a particular domain for a small dynaSoS that is built 
from scratch? How to introduce this concept incrementally into 
existing systems of systems?

Response time addressing asynchrony of continuous 
developments
One of the challenges of continuous development in dynaSoS 
is managing the development and integration of multiple com-
ponents with different lifecycles and development speeds. For 
example, different subsystems may be developed by different 
teams, and changes in one subsystem may affect the others. 
As systems continue to evolve, new requirements and changes 
may be introduced at different times, leading to asynchrony in 
the development process (Bauer, et al., 2019; Theobald, et al., 
2018). This can result in significant delays and inefficiencies, 
especially in safety-critical systems where a delay in response 
time can have severe consequences.

One significant challenge is ensuring that the development 
teams responsible for different components of the system can 
work together effectively. Collaboration is critical to ensure 
that changes are integrated smoothly and that there are no 
conflicts between different components. This requires a clear 
understanding of the system‘s architecture and an effective 
communication strategy that enables teams to work together 
seamlessly (Tisi, et al., 2021; McDermott, et al., 2020).

Another challenge is ensuring that changes to the system do 
not compromise its safety or performance. Asynchrony in 
development can lead to unforeseen consequences, and chan-
ges to one component can affect the behavior of the entire 
system. Therefore, it is essential to have an effective change 
management strategy that enables changes to be integrated 
into the system while ensuring that safety and performance 
are not compromised.

Engineering

These challenges are mostly related to the dimension »Engi-
neering«”, but the changes are rooted in the evolution toward 
larger-scale and more complex interconnected systems (i.e., 
horizontal, global dynaSoS).

 Digitalization and the digital economy are leading to a 
number of organizational and business changes. The way 
products are developed, sold, and used today is different 
from what was possible before the digital transformation. For 
instance, new versions of a software product can be shipped 
into production several time a day, or randomized experiments 
(so-called A/B testing) can be run in order to determine what 
features are most desirable or profitable. 

In terms of culture and organization, companies that are at 
the forefront of digitalization are facing novel challenges, and 
they are proposing novel solutions, such as “T-shaped” profi-
les13, cross-functional teams, lightweight and agile processes, 
flat hierarchies, everything as a service, etc. Many have also 
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published handbooks promoting their values, vision, and cul-
ture14. Their experience (good or bad) is going to be evaluated 
and adapted by other domains as they advance on the path of 
digitalization. 

Furthermore, the current Covid-19 crisis has forced many orga-
nizations to switch to remote work and make use of digital 
platforms. Although we can only see the very first effects of 
such crises on the state of digitalization (see, for example, 
a case study from Chemnitz University (Skulmowski, et al., 
2020)), it is believed to have accelerated digitalization and 
will have an impact on the way people work and what users 
expect in terms of digital services (LaBerge, et al., 2020). 

Shifts in culture, mindset, and organization appear to co-evol-
ve with societal trends and regulations. The climate change 
crisis and related political engagement are pushing organiza-
tions to move toward a more circular economy and to take 
rebound effects into account (Sundberg, 2022). 

For example, open source and open data are already an integ-
ral part of sustainable circular design15 as both ease the reuse 
of digital assets such as software, data, or designs. However, it 
is less clear how the measures that will be adopted by orga-
nizations in response to the climate change crisis will in turn 
affect software engineering.

Shortage of skilled workers, continuous education and 
the need for automation and low-code solutions
In the interviews with systems and software engineering 
experts as well as in the interviews with domain experts 
(see, for example, the results of our interviews for Smart City 
(Brandt, et al., 2022)), both groups pointed out that skills shor-
tage is a major challenge when it comes to pushing toward 
larger and more complex software systems such as dynaSoS. 
This problem also occurs in many other domains (Strietska-Ili-
na, 2008; Brunello, et al., 2019; George, et al., 2019; Amade, 
et al., 2021) and has been shown to be pronounced for activi-
ties related to digitalization (including IT, software engineering, 
and data science) (Janssen, 2022).

The Future of Jobs Report 2020 from the World Economic 
Forum (Zahidi, et al., 2020) estimates that half of all employees 
worldwide would need reskilling by 2025. The technological 
trends such as AI, Big Data, Data Science, or IoT, are seen as 
disruptive and will lead to radical changes, not only in the 
way we work, but also in the skills required (Li, 2022). Mitiga-
ting the risks related to skills shortage is a complex task, and 
several ways are being and will be explored to address this 
problem. For example, continuing education (and the integra-
tion of continuing education into the corporate culture) is one 
relevant aspect, increased automation and the application of 
low-code16 applications is another one17.

Transdisciplinary approach, fairness, diversity and 
inclusion
Not only are systems becoming more complex and their impact 
broader (see, for example, issues raised by automated deci-
sion-making (Zweig, 2019)), but requirements for the accoun-
tability of software engineers are increasing proportionally to 
the societal impact of the software being developed. Thus, 
many tech industries are investing in diversity and inclusion 
programs18, partly to ensure talent acquisition and retention 
but also because diversity and inclusion have been shown to 
improve productivity and software quality (Rodríguez-Pérez, et 
al., 2021). A transdisciplinary approach is already at the heart 
of research into complex systems and is also recognized by 
researchers in software engineering (Méndez Fernández, et 
al., 2019). However, in practice, very little is known about this 
topic.

Heterogeneous organizations
Constituent systems in a dynaSoS are designed, managed, 
and operated independent of each other, notwithstanding the 
fact that the organizations behind them should collaborate in 
order to foster synergies and optimize the fulfillment of the 
overarching goals of the dynaSoS. Achieving such synergy is 
challenging though. Different organizations may use different 
processes, techniques, and tools to develop and maintain their 
constituent systems (Liu, et al., 2020). Whenever coordination 
is required, issues are expected to emerge from conflicts bet-
ween the particular goals pursued by each party (which may 

13 T-shaped persons are people who are capable of being a specialist in one domain, but have enough generalist knowledge to enable them to collaborate with 
other experts across disciplines (Johnston, 1978). See also https://www.incose-cc.org/blog/the-t-shaped-engineer

14 Several examples are discussed by practitioners; for one example among many, see: https://techbeacon.com/app-dev-testing/
lessons-7-highly-successful-software-engineering-cultures

15 See https://opencircularity.info or https://oscedays.org/

16 Low-code (sometimes called no-code) is a software development approach that aims at minimizing the amount of coding by using a collection of ready-to-go 
UI components, boilerplate scripts, or visual workflow automation tools (such as the data analytics platform KNIME https://www.knime.com/blog/low-code-
data-science-is-the-future or Google blockly https://developers.google.com/blockly).

17 https://www.gartner.com/en/newsroom/press-releases/2022-12-13-gartner-forecasts-worldwide-low-code-development-technologies-market-to-grow-20-per-
cent-in-2023

18 https://corporate.zalando.com/de/dobetter-diversitaets-inklusionsbericht-2022

https://www.incose-cc.org/blog/the-t-shaped-engineer
https://techbeacon.com/app-dev-testing/lessons-7-highly-successful-software-engineering-cultures
https://techbeacon.com/app-dev-testing/lessons-7-highly-successful-software-engineering-cultures
https://opencircularity.info
https://oscedays.org/
https://www.knime.com/blog/low-code-data-science-is-the-future
https://www.knime.com/blog/low-code-data-science-is-the-future
https://developers.google.com/blockly
https://www.gartner.com/en/newsroom/press-releases/2022-12-13-gartner-forecasts-worldwide-low-code-development-technologies-market-to-grow-20-percent-in-2023
https://www.gartner.com/en/newsroom/press-releases/2022-12-13-gartner-forecasts-worldwide-low-code-development-technologies-market-to-grow-20-percent-in-2023
https://corporate.zalando.com/de/dobetter-diversitaets-inklusionsbericht-2022
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be reflected, for example, in how they prioritize their activities 
and which technology they use) and the overarching goals of 
the dynaSoS. In addition to that, the organizational heteroge-
neity is technically reflected in the different data formats and 
standards as well as the quality adopted and required by each 
system. From an organizational point of view, the question is 
how strategies to improve the overall SoS can be implemented 
when the distribution of costs and benefits among participants 
is not clear (Uday, et al., 2015).

Data acquisition, exchange, and interoperability
Different data sources may provide information about the 
same semantic concepts, but in different formats and reso-
lutions (a simple example would be temperature in °C/day 
versus temperature in °F/week). It is also possible that the data 
sources provide their information in different modalities (e.g., 
text, images, videos, audio, …). Merging different data sources 
is known as data fusion (Bleiholder, et al., 2009). Recent 
advances in deep learning have improved multimodal data 
fusion techniques, but this research and its applications are still 
in a preliminary stage (Gao, et al., 2020).

Data-driven decision systems, such as ML-based systems, 
almost always require some form of data pre-processing that 
is context- and application-dependent. Part of this pre-pro-
cessing is called feature engineering. A typical example from 
natural language processing would be the conversion of words 
into vectors using methods such as Word2Vec. These vectors 
(called features) can be used to compute the similarity bet-
ween pieces of text. The challenge here is that the features 
created depend on the goal of the system that created them 
and on the data used to create them. Tools such as feature 
stores and pre-trained models are already being used in practi-
ce, but very little is known about the usability of these features 
in other contexts. Furthermore, there are also privacy issues, 
and it is not yet fully understood to what extent protected 
attributes can be reconstructed using features developed by 
another constituent system.

Data quality, lifecycle management and data 
governance
Challenges related to data-intensive systems include aspects 
of data protection, data usage control, and data sovereignty: 
who has what kind of data, who has access for what purpose, 
and how is the data being used and exploited? The issue about 
who owns the data that is collected and exchanged has not be 
solved, and there is a legal vacuum about the topic (Singh, et 
al., 2018). Beyond the legal implications, there are also ethical 

concerns, especially when personal data is involved. These 
need to be tackled by the different organizations taking parts 
in the dynaSoS and require the definition of a data governance 
strategy on the dynaSoS level and the alignment of strategies 
and processes in place.

Another key challenge related to data-intensive systems is data 
quality. Data preparation is claimed to consume much of the 
time19 of any data-driven project. Data quality is a broad topic, 
and several standards have been devised to define it (e.g., ISO 
8000, ISO/IEC 25012, or ISO/IEC 5259). There are basically two 
main sources of problems that can cause poor data quality. 
The first one is related to the way data is acquired, transfor-
med, and stored. For example, the resolution of the initial 
measurements might be insufficient, raw data might be aggre-
gated and transformed losing some information on the way, 
and storage capacity may impose limitations on how much 
data can be kept and how good its resolution can be. This 
first set of challenges is common to every software system, 
whether data-intensive or not, but increases with the scale and 
complexity of the software system.

The second aspect relates to the intended use of the data and 
is particularly relevant to data-driven decision systems. Data 
captures only part of reality. This means that some relevant 
information may be missing. More importantly, a part of reality 
that is irrelevant to the problem at hand may be captured by 
the data. Some of the latest AI applications have recently been 
accused of not being fair and of perpetuating stereotypes. One 
example is the Word2Vec method (cited above), which trans-
forms words into vectors. When trained on available data from 
news articles, it has been shown to reproduce gender stereoty-
pes (Bolukbasi, et al., 2016). Research on algorithmic fairness, 
accountability, and transparency has grown in recent years20, 
providing initial tools to avoid this kind of undesirable behavior 
in data-driven systems and also helping to identify and address 
related data quality issues, which have in turn been implemen-
ted in major cloud providers21. However, these problems are far 
from being solved and will be relevant for dynaSoS.

Summary

We organized 24 research challenges for dynaSoS into eight 
clusters based on the research architecture. In the next 
chapter, we will detail the six research recommendations we 
derived from these challenges.

19 Here, the numbers vary between 50% and 80% depending on the sources.

20 See, for example, work done and published at these conferences https://facctconference.org/

21 See, for instance, https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-fairness-and-explainability.html or https://learn.microsoft.com/en-us/azure/
machine-learning/concept-fairness-ml

https://facctconference.org/
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-fairness-and-explainability.html
https://learn.microsoft.com/en-us/azure/machine-learning/concept-fairness-ml
https://learn.microsoft.com/en-us/azure/machine-learning/concept-fairness-ml
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Recommendation: Value-based engineering of 
dynaSoS

Economic rules and regulatory constraints define which atomic 
dynaSoS will be developed from scratch and how existing SoS 
will be transformed into dynaSoS. They have to comply with 
the values of the affected societies or individuals and establish 
the right incentives for a reasonable change. Even if this open 
issue seems more related to sustainability science, ethics, and 
regulatory science than to computer science, systems and 
software engineers are increasingly confronted with deep 
societal and environmental questions (Zweig, 2019; O‘Neil, 
2016; Sundberg, 2022) and software engineering has a role 
to play in this regard. Although ethics and sustainability have 
long been part of the engineering curriculum, they are still 
optional courses and training is insufficient for practitioners 
(Casañ, et al., 2020; Seyff, et al., 2020). The standard series 
IEEE 7000 already addresses this issue, but there is a lack of 
concrete methods and tools for implementing its requirements. 
In particular, methods and tools that allow us to investigate 
the potential sustainability effects of software systems are 
still in their infancy. Accordingly, we recommend accelera-
ting research and the development of applications at the 

intersection of systems and software engineering, ethics, and 
sustainability. 

Motivating challenges

1. Environmental and social impact: The growing trends 
of connected objects, cloud computing, and ever-growing 
digitalization open up many opportunities for collecting 
relevant information for shaping the digital transformation 
of SoS and for engineering dynaSoS for a better world. It is 
necessary to understand and control their impact on ecolo-
gical systems, societies, and individuals. Software enginee-
ring plays a key role not only in implementing the digital 
transformation but also in finding and assessing reasonable 
directions. 

2. Transdisciplinary approaches, fairness, diversity, and 
inclusion: Regarding the technical part, software engi-
neering is increasingly dealing with how people organize 
themselves in order to solve (complex) problems in an 
interdisciplinary manner. Systems thinking, critical and pre-
cise thinking, and T-shaped engineers22 are thus becoming 
increasingly important.

Recommendations, research 
directions and roadmap

In this chapter, we detail our six research recommendations for dynaSoS. 
Each recommendation is related to some of the research challenges introdu-
ced above. The recommendations are followed by potential research directi-
ons to be pursued. In total, we indicate 19 research directions and position 
them in a roadmap.

22 https://www.incose-cc.org/blog/the-t-shaped-engineer

https://www.incose-cc.org/blog/the-t-shaped-engineer
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Research directions

The following research directions are envisioned to address this 
recommendation:

Digital ecosystem shaping and requirements enginee-
ring for sustainable dynaSoS
As already stated above, software engineering plays a key 
role in understanding how to evolve SoS toward a sustaina-
ble world. In particular, requirements engineering is essential 
in this regard but still in its infancy when it comes to large 
heterogenous groups of stakeholders with conflicting inter-
ests. We recommend increasing efforts regarding the research, 
education, and development of approaches dealing with this 
issue. A promising research direction in this regard is given by 
digital ecosystem shaping. Digital ecosystem shaping helps 
to understand possible value streams and shape the business 
models of the organizations involved and related use cases of 
technical systems. A recommended future research direction is 
to enhance this approach with respect to damage streams and 
impact on ecological and social systems. 

Ethics of decision-making processes in dynaSoS 
Digital ecosystem shaping abstracts from the concrete behavi-
or of technical systems and their decision.making. Algorithmic 
decision-making systems (Hauer, et al., 2021; Castelluccia, 
et al., 2019) (such as credit scoring, news filter and ranking 

algorithms, etc.) have brought many ethical questions to 
the public space and have triggered novel research involving 
ethics, regulatory science, and software-related science inclu-
ding AI. Even though many novel results have been achieved, 
the challenges brought by dynaSoS concerning this topic are 
far from being solved. The ongoing work will foreseeably 
continue in the near future and requires further support to 
address dynaSoS due to complex interdependencies between 
the decision-making processes of different technical systems 
and humans.

Critical precise systems thinking and virtual engineering 
Understanding and engineering complex decision-making pro-
cesses is hardly possible without simulating them in a virtual 
world. In the context of virtual engineering, many methodo-
logies and tools have been developed, but applying them in 
the context of dynaSoS requires many systems engineering 
skills, such as critical and precise systems thinking (Arnold, et 
al., 2015). It is essential to understand dynaSoS as a whole and 
to reflect on possible evolutions. Critical and precise thinking 
is essential for avoiding fallacies in reasoning, including those 
related to ethics such as the naturalistic fallacy. The problems 
engineers are facing in terms of the sustainability of current 
SoS today cannot be solved at the same level of thinking they 
applied when they created them.

Figure 13. Clustering of challenges for value-based engineering of dynaSoS and related research directions
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Recommendation: Engineering of emergence and 
resilience

DynaSoS are intrinsically complex, and their behaviors depend 
on complex non-linear interactions at multiple scales. Enginee-
ring such complex systems requires an appropriate mindset 
and suitable methods and tools. The most recent advances in 
complexity and complex network sciences usually find their 
application in software engineering. For example, unders-
tanding how information flows in complex networks such as 
small worlds has led some companies to change their organi-
zations to flatter structures in order to improve communica-
tion and value flows (see, for example, the keynote by James 
Lewis about complexity and teams topologies23). However, it 
is very unclear how ideas from complexity science percolate 
into software engineering. Apart from different languages, 
the challenge is that complexity science studies emergent 
phenomena through the lens of models describing complex 
systems as a whole, taking a macro-level view of the problem. 
Software engineering, on the other hand, is concerned with 
the design of components that are part of complex systems, 
and has to deal with situations where the overall view of the 
whole is only partially available. Our recommendation is to 

continue supporting transdisciplinary projects in order to trans-
fer methods from basic research on complex systems (such as 
non-linear physics, network science, or social sciences) to the 
field of software engineering.

Motivating challenges

The main motivating challenges for this recommendation come 
from the fact that dynaSoS are complex systems: They are by 
definition composed of many, potentially heterogeneous inter-
acting systems, each developed by a different organization.

1. Complex failures and unwanted emergent phenome-
na: The behavior of dynaSoS is governed by intricate inter-
actions that take place at different scales. Therefore, it is 
almost impossible to anticipate all the interactions between 
all the parts, and complex failures will inevitably happen.

2. Causality and causal inference in complex systems: A 
related challenge concerns the discovery, understanding, 
and analysis of causal effects in complex systems, where 
causal effects have different time scales and might be 
highly non-linear.

Figure 14. Clustering of challenges for engineering emergence and resilience, and related research directions.

23 https://www.youtube.com/watch?v=_mYlSMepTGw

https://www.youtube.com/watch?v=_mYlSMepTGw
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3. Transdisciplinary approaches, fairness, diversity, and 
inclusion: It is unclear how state-of-the-art techniques 
from complex systems sciences can infuse software engi-
neering practice.

4. Uncertain and changing operational environment: 
Furthermore, dynaSoS are operating in open and dynamic 
environments, which makes it harder to anticipate all opera-
ting conditions.

5. Resilience and potentially unknown impacts: Finally, 
dynaSoS are large-scale systems, whose impact on their 
environment (be it societal or environmental) and feedback 
from their environment are largely unknown and difficult to 
assess.

Research directions

The following research directions are envisioned to address this 
recommendation:

Applicability and transfer of complexity sciences met-
hods to software engineering
Dealing with large-scale complex systems is not a problem 
faced by software engineering alone. Indeed, over the years, 
other research domains have developed methods and tools 
to model, understand, and control emergent phenomena. 
Complexity sciences encompass fields of science such as net-
work science, sociophysics, or econophysics24. Many different 
methods and tools have been developed, such as network 
analysis (including novel deep learning approaches for graphs), 
synergetics and non-linear dynamics, or agent-based modeling 
and simulations. However, very few of these techniques have 
found broad application in software engineering practice (see, 
for instance, (Mascardi, et al., 2019) or (Snafucatchers consor-
tium, 2017)) and are not part of the classical software enginee-
ring curriculum yet.

One research direction to pursue is to understand where 
the bottleneck between complexity sciences and software 
engineering practice comes from and to develop methods, 
curricula, and interdisciplinary projects to assess the potential 
and impact of complexity sciences on software engineering 
practice.

Understanding causality in complex software systems
The intricate networks of interactions in complex systems and 
the increased involvement of cyber-physical systems make it 

difficult to perform randomized experiments (see, for exam-
ple, (Mattos, et al., 2022) in the automotive domain) and 
increasingly requires reliance on observational data to unders-
tand causality and on the application of the relatively new 
techniques from statistical causal inference (Siebert, 2022). 
Classical statistical analysis (including machine learning) have 
been applied in software engineering for a long time. Howe-
ver, these have a major drawback, as they cannot distinguish 
between causal effect and spurious correlations. The data 
science, machine learning, and AI communities have recently 
recognized that these limitations undermine the properties of 
the developed systems such as fairness and explainability but 
also reliability and sustainability (Pearl, 2019; Schölkopf, 2019). 
Work is under way in the Data Science community (from both 
the academic25 and the industry side26). One of the research 
directions to follow is to promote a shift in practice from 
correlational analysis to more causal inference methods as 
well as to promote the transfer of basic research (such as that 
Department of Empirical Inference of the Max Planck Institute 
for Intelligent Systems, see https://ei.is.mpg.de/) to applied 
research and software engineering practice. 

Toward tools for automated monitoring, modeling, and 
simulation of large dynaSoS
The previously mentioned research directions focus more on 
changing the culture and the methods. It is clear that these 
changes will not be effective if the right tools are not develo-
ped in parallel. First, in order to observe emergent phenome-
na, it is necessary to monitor the system at different scales and 
to be able to link these observations to each other in order 
to understand how an event in a given component at a given 
time might impact the entire system later (Schlossnagle, 2017). 
Large complex software systems, even if properly monitored, 
are often not able to observe emergent phenomena simply 
because it is difficult to link events that are often observed at 
different scales by different systems or organizations. Second, 
modeling complex software systems requires coupling diffe-
rent models and simulation tools (Siebert, et al., 2010). In this 
case, co-simulation methods can help to reuse existing models 
and simulation software (Paris, et al., 2019). However, mode-
ling and analyzing emergent phenomena still requires a level of 
expertise not mastered by all software engineering practitio-
ners. One research direction to follow is to improve the ease of 
analyzing and modeling complex systems in order to unders-
tand and control emergent phenomena. A starting point could 
be the development of semi-automated monitoring and/or 
modeling tools for large complex software systems. 

24 See an overview at https://www.art-sciencefactory.com/complexity-map_feb09.html

25 CauSES – Approaches to causation in the social and natural sciences and their implications for theory building in sustainability science https://causes.seslink.org/ 

26 See for instance https://www.causalscience.org/meeting/programme/programme-2022/ or https://fairness.causalai.net/

https://ei.is.mpg.de/
https://www.art-sciencefactory.com/complexity-map_feb09.html
https://causes.seslink.org/
https://www.causalscience.org/meeting/programme/programme-2022/
https://fairness.causalai.net/
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Recommendation: Engineering of safe and highly 
trustworthy dynaSoS

On the one hand, the digital transformation of existing SoS 
into dynaSoS is indispensable to address ecological risks such 
as climate change. On the other hand, it introduces complexity 
and other properties that are in conflict with famous princip-
les for avoiding and mitigating risks, such as »Keep it simple, 
stupid!« (KISS principle). Safety research already provides some 
approaches for dealing with this conflict. We recommend 
supporting the further development of these approaches, their 
integration, and their application with respect to other trust-
worthiness aspects. This is particularly relevant for small atomic 
dynaSoS. To address larger and holistic dynaSoS, we recom-
mend enhancing the scope of safety research and integrating 
it with research from sustainability and complexity science.

Motivating challenges

1. Automated risk reasoning: Automated reasoning about 
trustworthiness is needed for two reasons. Technical 
systems in a dynaSoS make decisions that have an impact 
on safety and other trustworthiness aspects. Accordingly, 
algorithmic decision-making has to take different kinds of 
risks into account. This is challenging because it is hard to 
formalize risks and related risk reasoning. 

2. Interoperability and integrity of the exchanged infor-
mation: In a dynaSoS, the constituent systems typically 
collaborate to control risks. They exchange information that 
is relevant for estimating, assessing, and controlling risks. 
The level of confidence in the correctness of information 
may vary strongly for various reasons. In order to take this 
into account, approaches are required to model and analyze 
the integrity of information. 

3. Impact of security issues: Constituent systems in a dyna-
SoS have to be open in order to collaborate. This leads to a 
large attack surface. Furthermore, complex interdependen-
cies between malicious faults and other kinds of faults may 
exist because the constituent systems interact with each 
other in a complex way. Incorrect behavior of constituent 
systems may lead to emergent phenomena that have an 
impact on safety, availability, reliability, and other trustwort-
hiness aspects. 

4. Certification and continuous improvement: The evo-
lution of a dynaSoS or its operating context can introduce 
new risks or increase existing ones. For this reason, dynaSoS 
have to be improved continuously, but current safety regu-
lations and certification are limited to non-evolving systems 
with a clearly defined usage context. In many cases, tradi-
tional re-certification would unacceptably slow down the 
required evolution a dynaSoS. 

5. Assured dynamic software execution in distribu-
ted systems: In a dynaSoS, the execution of application 

Figure 15. Clustering of challenges for engineering safe and highly trustworthy dynaSoS and related research directions.
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software is often dynamic. The software is dynamically 
allocated to the execution platforms of its constituent sys-
tems and is dynamically scheduled after this allocation. This 
dynamism increases efficiency but makes it hard to provide 
good assurances. Optimization of the average case leads 
to large worst-case execution times. The failure rates of an 
application due to random hardware failures can hardly be 
determined. Thus, this dynamism is limited to non-critical 
applications. The transformation of SoS into dynaSoS often 
requires critical applications to also be executed dynamically 
(Adler, et al., 2022).

6. Assurance of AI and autonomy: The transformation of 
SoS into dynaSoS is based on Big Data and AI, which intro-
duces autonomy of the constituent systems. On the one 
hand, related technical means and properties open up new 
opportunities for dealing with risks. On the other hand, 
they make it challenging to assure that the intended risk 
reduction is actually achieved by these means.

7. Assurance, complexity, and emergent phenomena: 
Coping with complexity and engineering emergent behavior 
is already challenging if the risks are not so high. In the case 
of high risks, high confidence is needed that some very 
critical emergent phenomena will not occur or that required 
emergent behavior will always occur. 

Research directions

The following research directions are envisioned to address this 
recommendation:

Further development and integration of safety research 
for dynaSoS
Safety research already provides some approaches for dealing 
with these challenges. We recommend supporting the further 
development of these approaches, their integration, and their 
application with respect to other trustworthiness aspects. 

Automated reasoning (cf. motivating challenge 1) about 
trustworthiness aspects is supported by the research around 
dynamic risk management (Feth, 2020). This includes the 
implementation of a »runtime risk manager«, as it is called in 
VDE-AR-E 2842-61. As illustrated in the right part of Figure 16, 
dynamic risk management can happen at different scopes. 
Standards such as ISO 21815 focus on machinery and collision 
risks. The application rule VDE-AR-E 2842-61 already consi-
ders shared perception and cooperative risk management in 
small atomic dynaSoS. We propose considering dynamic risk 
management also in larger vertical or horizontal dynaSoS.

Enlarging the scope of risk reasoning and the transformation 
of SoS into dynaSoS requires critical applications to also be 
executed dynamically (cf. motivating challenge 5). As illustrated 
in Figure 17, virtualization allows abstracting from the exe-
cution platform. This abstraction supports resource-efficient 
execution of applications but is challenging from an assurance 
perspective because dynamism complicates common cause 
failures analysis and other safety analyses. Some solutions have 
been proposed (Adler, et al., 2022), but further research is 
needed to bridge the gap from abstract concepts to concrete 
solutions. The objective of this research is for the platform to 
use different kinds and amounts of resources depending on 
the required level of safety integrity. As illustrated in Figure 17, 

27 https://www.iese.fraunhofer.de/blog/zertifizierung-4-0/

28 https://www.din.de/de/ueber-normen-und-standards/smart-standards

Figure 16. Extending the scope of dynamic risk management and automated risk reasoning.

https://www.iese.fraunhofer.de/blog/zertifizierung-4-0/
https://www.art-sciencefactory.com/complexity-map_feb09.html 
https://www.din.de/de/ueber-normen-und-standards/smart-standards
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such a solution can be combined with risk reasoning on the 
application level. If the application identifies a change of risk 
in the current situation, the virtualization layer can adapt the 
mapping to the required resources. 

A modular approach is required to flexibly combine the inter-
action among different applications, among different plat-
forms, and among applications and platforms. Furthermore, 
the complete set of causes and effects need to be considered 
together. Causes should include conventional software and 
hardware faults but also malicious faults and faults of data-dri-
ven models. Effects should include the classical combination of 
reliability, availability, maintainability, and safety (RAMS), but 
also other trustworthiness aspects such as fairness. An exam-
ple of a modular approach are (Executable) Digital Dependabi-
lity Identities (Koorosh, et al., 2022). In order to deal with the 
evolution of dynaSoS and enable continuous trustworthiness 
engineering, this approach can be combined with the concept 
of DevOps. An example is SafeOps (Fayollas, et al., 2020).

These approaches need to be combined with solutions for 
handling the risks of autonomous constituent systems and 
related AI-based perception. This includes, for instance, 
solutions for measuring and handling uncertainty (Groß, et al., 
2022). Furthermore, this includes assurance cases for AI and 
autonomous systems such as SACE, AMLAS from the Assuring 
Autonomy International Programme, or work to measure the 
strength of assurance arguments (Bloomfield, et al., 2022).

All this research toward certification 4.027 goes hand in 
hand with the digital transformation of the testing-inspec-
tion-certification (TIC) industry. The TIC industry pushes the 
digitalization of standards in order to automate TIC processes. 

Related standards are also referred to as »smart« standards28  
– standards that are machine-applicable-readable-transferra-
ble. Smart standards need to become part of digital twins and 
DevOps for trustworthiness.

Combining safety research for dynaSoS with sustainabi-
lity research and complexity science
The safety research mentioned above focuses on technical 
aspects and relatively small dynaSoS. In order to support the 
necessary transformation of existing SoS into dynaSoS, a 
larger engineering scope is needed because of the complex 
interdependencies between different SoS. In 2019, the inter-
national collaboration community Engineering X launched a 
Safer Complex Systems initiative to address the issue of system 
interdependencies and related chain reactions if one system 
collapses. In this case, safety science already considers a very 
large geographic scope, but the scope is limited to the safety 
of the current population. In contrast to that, sustainability 
also takes into account the safety of future generations. In this 
regard, sustainability enhances safety. Accordingly, it makes 
sense to investigate whether the engineering approach for 
safety can be extended to include sustainability. Some initiati-
ves and proposals already hint at this idea, such as the working 
group »Safety of the Environment« of the Safety-Critical Sys-
tems Club29 or the paper »Global warming and system safety« 
(Jones, 2022). While this a reasonable research direction from 
a safety perspective, the primary challenge belongs to the 
field of sustainability science, and complexity science probably 
offers more solutions for coping with this complex challenge 
than safety science. However, sustainability science can benefit 
from safety science by using its lessons learned in regulation 
and certification. Accordingly, we recommend bringing these 
three research fields together. 

29 https://scsc.uk/ge

Figure 17. Combing dynamic software execution (»SIL 4 cloud«) with dynamic risk management.

https://scsc.uk/ge
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Recommendation: Context-aware behavior in 
dynaSoS

Usage scenarios for dynamic systems of systems are often 
pictured as smart scenarios, including, for example, smart 
farming, smart health, smart mobility, and smart city, as 
illustrated in our first report (Groen, et al., 2022). The »smart-
ness« of these scenarios is perceived by no one but humans, 
and context awareness is often the thing behind such smart 
behaviors (Pinheiro, et al., 2018). Therefore, the realization of 
the systems of the future requires investment to overcome cur-
rent engineering challenges related to context-aware systems, 
which are amplified even more considering the characteristics 
of dynaSoS. We recommend further research in the field of 
software engineering of context-aware systems, covering both 
design time and runtime aspects.

Motivating challenges

1. Uncertainty and changing operational environment: 
The constituent systems of a dynaSoS are deployed in open 
and dynamic environments, which makes it harder to antici-
pate all relevant contexts that may influence their operation 
and their system-supported user tasks.

2. Uncertainty due to autonomous and intelligent com-
ponents: Autonomous systems that use data-driven soft-
ware components make their decisions based on an internal 

representation derived from data. Such systems have an 
implicit uncertainty regarding their functionalities.

3. Design of context-aware behavior: Even considering our 
increasing ability to sense the context (i.e., to identify WHAT 
context is), it is still rather difficult to derive context-aware 
functionalities (i.e., to identify HOW context influences or 
can influence tasks).

4. Macro-level context awareness: Context may not 
influence only the constituent systems but also the system 
of systems as a whole. It is therefore important to unders-
tand the role of context at the macro level of a system of 
systems. 

5. Interoperability for shared context awareness: When 
constituent systems cooperate to achieve a high-level (SoS) 
goal, their partial understanding of the context hinders 
efficient collaboration. Shared context understanding calls 
for improved interoperability.

Research directions

The following research directions are envisioned to follow this 
recommendation:

Data-driven context modeling
The elicitation of context-aware functionalities can be impro-
ved through data-driven context modeling. Context modeling 

Figure 18. Clustering of challenges for context-aware behavior and related research directions.



Figure 19. While engineers in the »Green Company« try to 

figure out by themselves how context can be used to improve 

their field robots, »Blue Company« engineers are supported by 

a data-driven context-modeling approach.

Figure 20. Derivation of the contextual element »distance« 

from two other contextual elements. When there are several 

contextual elements, deriving new contextual elements may 

not be trivial.
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refers to the activities involved in creating conceptual models 
of the context that express the relationships between the 
context and system-supported tasks of interest, aiming at 
providing engineers with better support to devise context-
aware functionalities. The implementation of these data-driven 
context modeling approaches requires research on algorithms 
to support the analysis of context and its influence on tasks. 
Figure 19 illustrates the contrast between two companies, 
where only one of them uses data-driven context modeling. 
Early initiatives in this direction can be found in (Rodrigues, 
et al., 2019; Knauss, et al., 2016; Falcão, et al., 2022). It is 
necessary to further investigate, develop, and test different 
algorithms that specifically analyze contextual data and derive 
supporting knowledge to help requirements engineers identify 
novel context-aware functionalities.

In addition to the development of these algorithms, it is also 
necessary to carry out research on how to represent the know-
ledge gained through them. In other words, it is necessary to 
develop and evaluate context model representations (i.e., con-
text meta-models) to support the elicitation of context-aware 
functionalities. Such representations must be described formal-
ly in order to fit automated context-modeling approaches, and 
must be expressive enough to cover a broad range of systems, 
independent of their domains. Initial steps in this direction can 
be found, for example, in (Falcão, et al., 2022). However, there 
is a need for more research on the foundations of context 
model representations to further develop their expressiveness, 
as well as empirical research to validate them. Moreover, it is 
necessary to fill the gap between the output of the algorithms 
and the context model representations by providing tool sup-
port to software engineers to generate the concrete context 
models (initial results in this area can be found in (Falcão, et al., 
2022).

Continuous context modeling
Data collection is required to enable any data-driven approach. 
Once the data processing algorithms and modeling tools are in 
place, most of the effort is shifted to the data collection step. 
Therefore, investing in automated strategies for data collec-
tion will improve the efficiency of engineering context-aware 
functionalities. Once data collection is automated, the way will 
then be paved for the implementation of continuous context 
modeling, where context-modeling activities, which nowadays 
are performed at design time, will happen at runtime. Continu-
ous context modeling will enable software engineers to disco-
ver innovative smart behaviors faster by helping them learn 
about the opportunities provided by the dynamic environment 
as soon as they emerge from the contextual data being conti-
nuously collected and fed into context-modeling tools.

Quality of contextual data
Based on initial contextual data or information, it is possible 
to derive new contextual elements. Consider, for example, a 
smart mobility solution that collects, among other data, the 
location of the user and the vehicles. A trivial example is the 
derivation of the contextual element distance (see  Figure 20). 
This derivation is done through an operation that someone has 
to implement.

A comprehensive catalog of operators can play a decisive role 
in the definition of context-aware functionalities. In a scena-
rio with dozens of contextual elements and multiple systems 
generating data that are relevant for the system-supported 
tasks, the ability to derive new contextual elements from 
primary ones can provide system designers with shortcuts to 
better understand how the context may influence system-sup-
ported tasks. As the possession of such a catalog would put 
companies who have it in an advantageous position compared 
to those who do not have it, we see the possibility for research 
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to play a prominent role in fostering the development of an 
open catalog of contextual operators. These operators take 
contextual elements as input and also produce contextual 
elements. Therefore, it is also necessary to maintain an open 
vocabulary of contextual element types. Figure 21 illustrates 
two services, Service 1 and Service 2, that benefit from an 
open contextual operator catalog to derive more contextual 
elements.

Middlewares for interoperable contextual data
We envision the development of middlewares to support the 
interoperability of contextual data, so that constituent systems 
in a dynaSoS can have a shared understanding of their (shared) 
context. Enabling such a shared understanding is important for 
at least two reasons. First, although constituent systems are 
operated independently, they interact with each other either 
directly or indirectly. The more these constituent systems are 
able to share a common understanding of their context, the 
better their chances of implementing smart behaviors at the 
system-of-systems level. The other reason is that all constituent 
systems are potential context sources. Therefore, if contextual 
information about each system can be made available to the 
others through a standardized protocol, it becomes easier for 
each part to provide their unique contributions to the overall 
context. For example, while more than one constituent system 
might be able to sense, by their own means, the current 
weather conditions, only each particular system knows about 
its internal operational status, which may include, for example, 
their energy autonomy or current limitations in its capabilities. 

The design and deployment of such a middleware can lead to 
both edge and cloud solutions, meaning that further research 
can be developed in both directions. In the edge, we see some 
scenarios where either local infrastructure or a federated net-
work of such a middleware hosted by the constituent systems 
can be provided to receive and distribute contextual informa-
tion. On the other hand, the rise of 5G networks might enable 

cloud-based solutions for such middleware and support several 
smart scenarios, independent of their location and in a more 
cost-effective manner. Figure 22 illustrates a smart farming 
scenario where elements such as tractors, weed control robots, 
and an irrigation system send/get contextual information to/
from a middleware for context.

Decision-making under uncertainty
Machine learning and data-driven models are powerful means 
to collect relevant information about the context. A major 
issue with these models is that their output is subject to 
uncertainty. Many approaches exist to minimize uncertainty, 
but some residual uncertainty can hardly be avoided. DIN SPEC 
92005 “Artificial Intelligence – Uncertainty Quantification in 
Machine Learning” is currently under development and will 
collect existing approaches to measure the residual uncertainty 
and clarify the various notions of uncertainty. Measurement 
also includes approaches for estimating the uncertainty during 
operation. Some proposals (Groß, et al., 2022) have already 
been made for the consideration of this uncertainty in deci-
sion-making. Further research is required to deal with depen-
dencies of uncertainties. How can uncertainties be combined 
if there is a sequence of outputs with a related sequence of 
uncertainties? Can decision-making take advantage of this 
or is this not possible because of stochastic dependencies? 
How can uncertainties of different data-driven models be 
combined? Furthermore, it is worth investigating synergies 
between the measurement of uncertainty (Groß, et al., 2022)  
and the measurement of robustness (Siedel, et al., 2022) . Can 
these approaches be combined to make them beneficial for 
decision-making?

Figure 21. Two constituent systems, Service 1 and Service 2, in 

a smart mobility scenario collect contextual data from diffe-

rent sources. Both benefit from an open catalog of contextual 

operators to derive new contextual elements and store the 

corresponding contextual data. Arrows indicate data flow.

Figure 22. Machines, sensors, and other software-based 

elements send and retrieve context information from a 

middleware.



45

Recommendations, research directions and roadmap

Recommendation: Automated software enginee-
ring for dynaSoS

The automation of software engineering tasks has been a 
long-standing goal for research and industry. The evolution of 
technologies (e.g., cloud, fog, edge, serverless, ...), the scale 
of systems being designed, and advances in analysis methods 
all influence each other and perpetuate the need for research 
in this area. For example, the availability of a large number of 
software repositories (e.g., Github) combined with new advan-
ces in code analysis based on very large deep learning models 
(such as OpenAI‘s Codex30, Code2vec31) have triggered a wave 
of new work to automate tasks that were previously very 
difficult or impossible to automate (Yang, et al., 2022), such 
as generating code from natural language, extracting requi-
rements from text, etc. (see, for instance, already available 
tools like Microsoft’s Github Copilot32, Tabnine33, or the recent 
Amazon Web Service Codewhisperer34). One recommendation 
is to continue research efforts regarding the automation of 
software engineering tasks (including, but not limited to, AI-
based approaches) while ensuring that these new methods can 
be empirically validated on realistic setups. Another important 

point is to ensure that the underlying analytics methods do 
not create a lock-in effect (for example, only a few organiza-
tions such as Microsoft, Nvidia, OpenAI, Facebook, etc. can 
train very large deep learning text models), to consider and 
mitigate the underlying costs in terms of power consumption, 
and to continue research in terms of data privacy and model 
explainability.

Motivating challenges

1. Impact of scale and complexity on engineering tasks: 
The scale of the systems to be designed as well as the 
multiplicity of stakeholders involved make engineering tasks 
more and more difficult. This makes it harder to automate 
them completely but generates demands to automate them 
as much as possible in order to implement them within 
cost constraints. Engineering tasks include verification and 
validation. Automated verification and validation during 
operation are needed to collect the required evidences for 
quality assurance. 

Figure 23. Clustering of challenges for automated software engineering and related research directions.

30 https://openai.com/blog/openai-codex/

31 https://code2vec.org/

32 https://github.com/features/copilot 

33 https://www.tabnine.com/

34  https://aws.amazon.com/codewhisperer/

https://openai.com/blog/openai-codex/
https://www.art-sciencefactory.com/complexity-map_feb09.html 
https://code2vec.org/
https://github.com/features/copilot
https://www.tabnine.com/
https://aws.amazon.com/codewhisperer/
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2. Response time addressing asynchrony of continuous 
developments: Because dynaSoS are open heterogeneous 
systems continuously developed by different organizations, 
software engineering needs to be faster in order to react 
in time to unexpected events. In a safety-critical context, 
changes demand re-certification, which is too time-consu-
ming for many dynaSoS use cases. 

3. Shortage of skilled workers, continuous education, 
and the need for automation and low-code solutions: 
The technological trends underlying our dynaSoS vision 
such as AI, Big Data, data science, IoT, 5G & &G, cybersecu-
rity, as well as green energy are seen as disruptive and will 
lead to radical changes, not only in the way we work, but 
also in the skills required (Li, 2022). 

Research directions

The following research directions are envisioned to address this 
recommendation:

Pursuing efforts in research in applied AI for software 
engineering
The latest advances in the field of AI, in particular the develop-
ment of deep learning models and representation-based 
learning methods, allow for applications that were previously 
impossible, whether in natural language processing, computa-
tional vision, or multimodal information processing (i.e., com-
bining several modalities such as text, images, sound, video, 
etc.). Software engineering is, of course, taking advantage of 
these advances, and the applications of these AI techniques 
within software engineering are numerous (see, for example, 
sub-domains such as Artificial Intelligence for Software Engi-
neering (AI4SE), Artificial Intelligence for IT Operations (AIOps), 
or Artificial Intelligence driven Development Environments 
(AIDE)). In the near future, new advances in deep learning will 
continue to infuse software engineering and new applications 
(especially multimodal ones) will emerge.

We recommend continuing research efforts in this direction, 
especially regarding multimodality. This should include the 
joint use of code as text but also of so-called intermediate 
representations (such as AST, or the SSA form, which are alrea-
dy in use) as well as other types of input data such as architec-
tural diagrams, images, or even sound.

Research methods and infrastructure for validating soft-
ware engineering automation
As systems to be engineered grow in size and complexity, 
empirically validating software engineering methods becomes 

harder and harder. This point was (and still is) regularly men-
tioned by the software engineering community (see (Briand, 
et al., 2017) (Méndez Fernández, et al., 2019)). As the scale, 
dynamics, and complexity of systems increase, it will be increa-
singly difficult to access and collect data on these systems (see, 
for example, the IBM CodeNet project35) and to properly set up 
experiments to try to falsify new methods. 

It is especially important to recognize that advances in automa-
ted software engineering are likely to emerge from collabora-
tion with industrial research (see, for instance, what Facebook 
is doing (Bader, et al., 2021)). This is due, on the one hand, to 
the increasing pressure in terms of software engineering that 
companies developing complex digital solutions are subject, 
but also to the fact that some of these companies have access 
to both skills and data that escape national research organi-
zations today. In this respect, it is necessary to continue and 
develop the existing research and development strategy of 
involving industry, but it is also necessary to ask questions 
regarding the responsibility of the digital giants as research 
actors.

Impact of advanced automation capabilities on software 
engineering
Advances in analytics and AI are already having an impact on 
the way software engineering teaching and learning is done 
(Kästner, et al., 2020; Imai, 2022; Puryear, et al., 2022; Ernst, 
et al., 2022). Software engineers must increasingly rely on 
tools that automate laborious tasks, and must also understand 
in principle how these tools work and what their strengths 
and weaknesses are. Discussions about the impact of AI on 
software engineering are not unlike those of the late 1980s 
(before the second AI winter) (Ford, 1987; Partrdige, et al., 
1987). At that time, AI was mostly synonymous with expert 
systems. It is worth noting that automation tools (whether AI-
based or not) were integrated into software engineering tools 
where they made the most sense. In a sense, these are tools 
that need to be mastered. This is why further investigation 
is necessary on topics such as explainability, data protection, 
safety and security issues (such as adversarial attacks), and 
handling of causality (see Recommendation: Engineering of 
emergence and resilience). For this, transdisciplinary transfer is 
equally necessary to explore existing solutions in other fields

Recommendation: Reliable data management for 
dynaSoS

DynaSoS systems are data-intensive systems, where different 
organizations may need to share information and where value 
is created from data from various sources. As such, dynaSoS 

35 https://developer.ibm.com/exchanges/data/all/project-codenet/

https://developer.ibm.com/exchanges/data/all/project-codenet/
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call for attention toward data management. »Data manage-
ment« is an overarching term that covers multiple data-rela-
ted aspects, such as data architecture, data acquisition, data 
storing, data quality, data integration, and data governance. 
In dynaSoS, large amounts of data are generated in diverse 
formats and with varying degrees of quality. This poses both 
technical and organizational challenges to the design, imple-
mentation, and operation of dynaSoS: On the one hand, the 
constituent systems need to fundamentally rely on data to 
implement their autonomous behaviors and smartness; on the 
other hand, data reliability is defied by a high level of hetero-
geneity and openness, which characterize dynaSoS. Therefore, 
we envision further research toward reliable data management 
for dynaSoS: There is a need to find ways of architecting, 
deploying, operating, and assuring reliable data for dynaSoS in 
order to make these systems more resilient to the open nature 
of the environments in which these systems operate. As poten-
tial research directions, we see investing in data acquisition 
methods optimized for dynaSoS; designing and developing 
data architectures for dynaSoS; and exploring adequate data 
governance designs for dynaSoS.

Motivating challenges

1. Data acquisition, exchange, and interoperability: 
First of all, because dynaSoS are data-intensive systems, 
they face challenges related to Big Data and require clear 
data management and a good governance strategy to be 
in place. Moreover, quantity is not a synonym of either 
»quality« or »suitability«. Different systems have different 
requirements and large volumes of data require adequate 
processing steps to be truly beneficial for systems.

2. Heterogeneous constituent systems: DynaSoS demand 
continuous integration of disparate data, which challen-
ges not only the design of constituent systems but also 
the monitoring of high-level (i.e., SoS-level) behavior. 
Furthermore, since each constituent system is technically 
and operationally independent from the others, black-box 
integration is required. 

3. Heterogeneous organization: In such diverse scenarios 
as we see in dynaSoS (several stakeholders, each having its 
own particularities – including, for example, business goals, 
operational procedures, technical stack), the variety in data 
formats and quality is enormous. Apart from the direct 
implication for interoperability, it is a major challenge to 
create and foster synergies among participants. 

4. Data quality, lifecycle management, and data gover-
nance: Data ownership and usage rights are an open 
organizational issue, with legal/ethical implications.

Research directions

The following research directions are envisioned to address this 
recommendation:

Smart data acquisition
Research on data acquisition can help to make data manage-
ment for dynaSoS more reliable as it contributes to improving 
the quality of the data made available. Where the amount of 
accessible data is larger than what systems are able to process 
within a reasonable amount of time, a desirable goal is to 
have constituent systems deal only with »as-much-as-nee-
ded« data. This requires the ability of filtering out what is not 

Figure 24. Clustering of challenges for reliable data management and related research directions.
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necessary (Younan, et al., 2020). The implementation of smart 
data filtering may be achievable through context-aware data 
acquisition, which should also be fully automated (Taivalsaari, 
et al., 2017).

From the SoS point of view, a holistic view on data acquisition 
(as well as data storage and data processing) may improve the 
overall system by deriving new domain-relevant data based on 
primary data sources. This idea can be illustrated by already 
existing traffic apps: Based on individual information about 
the position and speed of cars, such solutions are able to 
derive high-level traffic information. Likewise, based on the 
large streams of data being generated by distributed sources 
deployed in physical environments, high-level information can 
be generated and made available for all participants, which 
may increase the energy efficiency of the SoS as a whole. As 
participants might tend to optimize their individual efficiency, 
it becomes necessary to architect dynaSoS in such a way that 
collaboration is encouraged, easy, and rewarding.

Data architectures for dynaSoS
The study of alternatives and improvements in data architec-
tures for dynaSoS is also an important research direction to 
follow for reliable data management. First, appropriate archi-
tecture designs determine how quality attributes are achieved, 
and interoperability is a core architecture driver for dynaSoS. In 
some particular scenarios where participation and geographic 
position of the constituent systems are entirely open, even 
enabling unconstrained data exchange among participants 
is an ambitious undertaking (Tsigkanos, et al., 2019). Besides 
that, further research on semantic interoperability may also 
add to the development of adequate data architectures, as the 
usage of semantically annotated data facilitates neutralizing 
data format restrictions (Franke, et al., 2021). Second, the 
more open a dynaSoS is, the higher the potential of conflicting 
goals between constituent systems and the SoS. Therefore, 
research on data architectures that motivate trust and coope-
ration among participants is needed. In this direction, there 
are at least two possible ways to go: One opportunity lies in 
architectures based on multi-agent systems, where trust and 
reputation models can be developed and provide references 
for participants (Fang, 2021); another is to invest in data trust 
platforms on which constituent systems could rely to share 
data in a trustworthy manner.

Concerning the data storage strategy, the usage of architectu-
res that favor data replication across constituent systems might 
call for further research on eventual consistency. It is necessary 
to invest in methods aimed at making the implementation of 
eventual consistency both practical and suitable for the open 
and heterogenic nature of dynaSoS.

Finally, further advancements in edge computing may enable 
more alternatives in terms of data architectures. Because 

constituent systems may operate in resource-constrained 
environments, providing these systems with full-fledged edge 
infrastructure is a possible approach (Tsigkanos, et al., 2019), 
including the capability of handling and processing data 
(Younan, et al., 2020). Conversely, an edge infrastructure itself 
often has constrained resources that require investments in 
its efficiency. Tools and methods focused on building edge 
computing solutions will be of great help for engineers and 
should cover different dimensions of efficiency, including, for 
example, storage, energy consumption, and time behavior.

Trustful data governance for dynaSoS
The legal and ethical issues raised by data ownership call 
for research on data governance for dynaSoS. From a purely 
organizational perspective, investment in legal frameworks 
(both general and domain-specific ones) is necessary, as pure 
technical enforcement can be highly challenging. Thus, whene-
ver technical enforcement cannot suffice, an appropriate legal 
framework should protect stakeholders from misuse of data. 
Either way – be it organizational or technical –, research on 
software engineering may also contribute to a data governan-
ce model that facilitates trust among participants. 

From a technical perspective, it should be clear for partici-
pants in a dynaSoS who owns the data and what data usage 
policies are in place. Therefore, research on data usage policy 
enforcement for distributed systems is promising to foster the 
development of trustful dynaSoS. Research opportunities in 
this direction include the advancement of technologies that 
embed cross-company trust in their constructs. Whenever par-
ticipants cannot trust each other, mediation of data exchange 
through specialized components that take responsibility for 
managing trust can be put in place. Therefore, research on 
the design, development, deployment, and operation of either 
central or distributed trustee platforms is recommended. 

Alternatively, blockchain is a technology that is regarded as a 
promising data management enabler in many domains, in par-
ticular for establishing trust in a technical manner. Blockchain 
is expected to help supply/access data for/in different devices 
(Miloslavskaya, et al., 2019) and tackle security and privacy 
concerns related to collected data in the future (Ahlawat, et 
al., 2021). On the other hand, it is worth noting that block-
chain technology can be highly energy-demanding, in parti-
cular in large-scale systems. Yet another option that has been 
investigated in recent years and that combines technical and 
organizational elements is the design of federated data spaces 
to enable trusted data exchange across heterogeneous parties 
(Bohlen, et al., 2018).

With respect to methods and frameworks, it is recommended 
investing more in inter-organizational data governance, as 
most research has neither focused on it (Nielsen, 2017) nor 
explained how data ownership and control can be ensured in 
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inter-organizational settings, both at company and individual 
levels. Furthermore, given the inherent complexity of dynaSoS, 
studies are necessary to explore and identify adequate data 
governance designs »for one-to-one, one-to-many, and many-
to-many inter-organizational settings« (Abraham, et al., 2019). 

Roadmap

We organized the proposed research directions into a road-
map that features two dimensions: time and impact. Figure 25 
illustrates a detailed view of the roadmap. The colors indicate 
to which of the six research recommendations each direction 
belongs. This roadmap is based on several workshops with 
external and internal experts that were organized throughout 
the project. 

The horizontal axis features the time dimension. It is used to 
indicate whether a certain research direction is perceived as 
a short-, mid-, or long-term direction to be pursued. At this 
point, it is important to state that the research directions are, 
as the title indicates, »directions« -- and therefore neither 
starting nor finishing lines. When a particular research direc-
tion is placed on the right side of the roadmap, this does not 
imply that research on the direction should be delayed, but 
rather that it is perceived as a long-term research topic – such 
research directions are expected to demand more effort.

In general, short-term directions are characterized by two 
things: First, they are topics where research has already been 
actively developed and must be further pursued toward the 
realization of dynaSoS. Second, some of them can be unders-
tood as corner stones, or building blocks, for others. The 
boundaries between the research directions are not sharp, and 
aspects of each direction can be found to contribute to other 
directions. Two such examples are the research directions 
»Smart data acquisition« and »Quality of contextual data«. As 
dynaSoS are data-intensive systems, it is natural to think about 
their precedence over mid-term directions such as »Data-dri-
ven context modeling« and »Continuous context modeling«.

The vertical axis features the impact dimension. Impact here 
refers to the potential impact of the research direction in 
society. It is not meant to imply that the research directions 
indicated in the lower area of the roadmap are less important 
than those in the upper area. Instead, it is supposed to mean 
that the perceived impact of the directions in the upper area 
of the roadmap is expected to be more tangible for society 
and industry. Research directions that feature sustainability 
and applied software engineering research, for example, are 
regarded as high-impact directions. 

Figure 25. Roadmap for dynaSoS featuring 6 recommendations and their respective 19 research directions.
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Summary and outlook

Summary

In order to understand the broad role played 
by the topic of dynamic systems of systems, 
six different application areas were examined. 
Concrete example systems also helped us to 
understand the requirements for dynaSoS and 
were used to derive the research questions. A 
large number of relevant domains are affected 
by dynaSoS.

The research topics were then identified 
through a variety of interviews, expert 
workshops, and a broad literature review. 
The research architecture first helped us 
to better understand dynaSoS. This then 
allowed research challenges to be derived and 
sorted into clusters. Various themes from the 
clusters then led to recommendations when 
bundled together. Six core recommendations 
were derived for the following areas: Value-
based engineering of dynaSoS; Engineering 
of emergence and resilience; Reliable data 
management for dynaSoS; Automated soft-
ware engineering for dynaSoS; Context-aware 
behavior of dynaSoS; and Engineering of safe 
and highly trustworthy dynaSoS. 

Each of these recommendation areas was 
further detailed and finally sorted into a road-
map in terms of potential (impact) and time 
perspective.

Reflection

We presented a research roadmap for the 
software engineering of trustworthy dynamic 
systems of systems. The roadmap we develo-
ped is based on interviews with experts and 
decision makers, workshops, and systematic 
literature reviews. The literature reviews 
include related roadmaps published before the 
project (e.g., (Northrop, et al., 2006; Carleton, 
et al., 2021; SafeTRANS, 2019; Kagermann, et 
al., 2017)) or during the project (see (Eletronic 
Components and Systems, 2023; INCOSE, 
2023)). Some of those roadmaps focus on the 
future of software engineering while others 
focus on the future of systems engineering. 
Some highlight the large scale of systems 
while others focus on autonomy or safety and 
security. We focused on software engineering, 
dynamics, and autonomy in systems of sys-
tems, and on high trustworthiness. This focus 

Summary and outlook

In this chapter, we conclude this report by reflecting on the results, discuss 
its limitations, and provide an outlook on future development.
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is unique. Another differentiation concerns the 
people involved. Developments are driven or 
blocked by people who have the authority or 
resources to make other people follow them. 
Our roadmap has a clear focus on Germany. 
We involved authors from related German 
roadmaps (SafeTRANS, 2019; Kagermann, et 
al., 2017) and discussed existing roadmaps 
with stakeholders who understand what 
drives and what blocks envisioned innovations 
in particular domains. A majority of these 
stakeholders mentioned that serious technical 
challenges are often not the main obstacle 
to implementing visions; rather, the problem 
are complex, systemic issues of the current 
regime. We considered this main issue in our 
roadmap but focused on technical, software-
related challenges. 

Limitations 

We limited our recommendations to six fields 
of action. We highlighted certain challenges 
and related research directions for each of the 
six recommendations. The recommendations 
as well as their challenges and research direc-
tions are relevant from our point of view, but 
not complete. 

Our framework for describing dynaSoS in 
terms of dimensions and deriving clusters 
of challenges from this description is also 
not necessarily complete. However, it was 
sufficient to structure all the challenges we 

collected during the project. It also supported 
us in formulating the challenges by providing 
context. 

Outlook 

The framework could be filled with further 
research challenges in the future and help to 
identify further connecting points between 
research activities. It provides a terminolo-
gy for discussing dynaSoS that is similar to 
the way RAMI 4.0 provides a terminology 
for discussing Industry 4.0. So far, there is 
no platform for dynaSoS. Germany has a 
platform for Industry 4.0 and a platform for 
learning systems. In the future, we may have 
a platform for dynaSoS. As long as no such 
platform exists yet, we invite researchers and 
practitioners to get in touch with us. 

Funding agencies may use this work to 
identify research topics within their scope 
of funding or to get inspirations for their 
funding strategy. The amount of investment 
is an important factor for the implementation 
of the roadmap, but there are a lot of other 
factors that need to be considered in order to 
estimate the timeframe for realizing dynaSoS 
in Germany and beyond. These include, for 
instance, the gap between the state of the art 
and the state of the practice, systemic issues 
that hinder changes of current regimes (Geels, 
2002), and collaboration with the global 
research community.
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Appendix A – German research landscape

Here we indicate German research organizations that, from our point of view, can help implement the research roadmap for 
dynaSoS. While this list is definitely not complete, it should provide a starting point for building networks and/or consortia of 
organizations with the purpose of fostering collaboration on dynaSoS.

For the sake of transparency, we have put in bold face the names of the organizations whose individuals contributed to the 
DynaSoS project. We take this opportunity to thank them once again for investing their invaluable time in sharing with us their 
thoughts on challenges, recommendations, and research directions for dynaSoS.

Computer Science Research at Max Planck Institutes 

The Max Planck Society is composed of several research institutions in Germany and abroad that carry out basic research in diffe-
rent knowledge fields. Among these, some institutes focus on Computer Science research, including the Max Planck Institute for 
Informatics, the Max Planck Institute for Intelligent Systems, and the Max Planck Institute for Software and Systems.

DFKI

The German Center for Artificial Intelligence (DFKI) conducts research related to AI including cyber-physical systems and multi-
agent systems.

Fortiss

Fields of research include Architecture and Services for Critical Infrastructures, Human-centered Engineering, Industrial IoT, ML, 
Model-based Engineering, and Software Dependability, among others.

Fraunhofer ICT Group

The Fraunhofer ICT Group as part of the Fraunhofer-Gesellschaft is the largest IT research organization in Europe. The Fraunhofer 
ICT Group currently has 21 member institutes throughout Germany including, for instance, the Fraunhofer Institute for Software 
and Systems Engineering ISST, the Fraunhofer Institute for Open Communication Systems FOKUS, the Fraunhofer Institute for 
Intelligent Analysis and Information Systems IAIS, the Fraunhofer Institute for Cognitive Systems IKS, and the Fraunhofer Institute 
for Experimental Software Engineering IESE.

FZI

Research areas Software Engineering, Embedded Systems and Sensors Engineering, Intelligent Systems and Production Enginee-
ring, and Information Process Engineering.

Appendix A – German research 
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https://www.cis.mpg.de/
https://www.dfki.de/web
https://www.fortiss.org/
https://www.iuk.fraunhofer.de/en/about-our-group/member-institutes.html
https://www.fzi.de/
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German Institute of Urban Affairs

The institute carries out research on solutions for municipal challenges. It advises municipalities on different topics, such as intelli-
gent transport systems, sharing economy, smart city, and resilient cities, among others.

German Systems Engineering Society

The German Systems Engineering Society represents INCOSE in German-speaking countries. Working groups include AI-based 
System, Model-based Systems Engineering, Moderate-Complex Systems, and Sustainability enabled by Systems Engineering.

Humboldt University Berlin

Software and Systems Engineering for Complex Safety-Critical Systems and Software Evolution

Institute for AI Safety and Security

Research fields include AI Engineering, Safety-critical Data Infrastructure, Execution Environments & Innovative Computing 
Models, and Business Development and Strategy.

Institute for Product Engineering at KIT

Research groups include Advanced Systems Engineering, and Human-Machine Systems.

Institute of Information Security and Dependability

Research groups for Decentralized Systems and Network Services, Modelling for Continuous Software Engineering, Logic of 
Autonomous Dynamical Systems, Dependability of Software-intensive Systems and Test, Validation and Analysis of Software-
Intensive Systems.

Karlsruhe Institute of Technology

Software Design and Quality, including the research groups “Modeling for Continuous Software Engineering” and “Dependabili-
ty of Software-intensive Systems”

Ludwig-Maximilians-Universität München (LMU)

Chair of Human-Centered Ubiquitous Media AG

�

�

�

�

�

�

�

�

https://difu.de/
https://www.gfse.de/
https://www.hu-berlin.de/
https://www.dlr.de/ki/en/desktopdefault.aspx/tabid-17270/27361_read-69839/
https://www.ipek.kit.edu/
https://www.dlr.de/ki/en/desktopdefault.aspx/tabid-17270/27361_read-69839/
https://www.kit.edu/
https://www.lmu.de/
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National Academy of Science and Engineering

Topics include Energy & Resources, Healthcare technology, Circular Economy, Innovation, Digital & Self-learning, International 
Cooperation, and Mobility, among others.

RheinMain University of Applied Sciences (HSRM)

Working group “Learning and Visual Systems”, member of the research focal area “Smart Systems for Man and Technology”. 
Research topics include computer vision, ML, and data science, among others.

Rhineland-Palatinate Technical University (formerly Technical University of Kaiserslautern)

Chair of Software Engineering – Dynamic risk assessment and safety assurance under uncertainty; Chair of Artificial Intelligence; 
Algorithmic Accountability Lab

Saarland University

Explainability and Perspicuous Computing – Research on many topics including CPS, dynamic dependable systems, dynamic and 
hybrid systems, among others.

Safetrans

SafeTRANS is a not-for-profit association joining partners from industry and science across application domains. Its roadmap and 
position paper »Safety, Security, and Certifiability of Future Man-Machine Systems« is closely related to dynaSoS and the recom-
mendation addressing safety and trustworthiness.

Technical University of Berlin

Information System Engineering – Research on many topics including automated driving, cloud-native architecture and enginee-
ring, AI-based data sovereignty, data-driven processes, and data management, among others.

Technical University of Munich (TUM)

Applied Software Engineering Group – Research fields include continuous software engineering, CPS, smart environments, and 
ML applications, among others.
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�

�

�

�

�

https://www.acatech.de/
https://www.hs-rm.de/
https://rptu.de/
https://www.uni-saarland.de/
https://www.safetrans-de.org/en/index.php
https://www.tu.berlin/
https://www.tum.de/
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Universität Hamburg

Among the foci of the Department of Informatics are Human-Centered Computing (see Ethics in Information Technology), 
Complex System Engineering (see Databases and Information Systems, Applied Software Technology, and Information System, 
Socio-Technical System Design).

University of Braunschweig

Chair of Sustainable Manufacturing & Life Cycle Engineering including an SoS Engineering Research Group

University of Cologne

Software and Systems Engineering addressing Requirements Engineering and Data-driven Systems Engineering

University of Oldenburg

Department of Foundations and Applications of Systems of Cyber-Physical Systems for modeling, verification, and synthesis of 
reactive, real-time, and hybrid dynamics in embedded and cyber-physical systems.

University of Rostock

Chair for Modeling and Simulation

University of Stuttgart

Institute of Software Engineering (Empirical Software Engineering Group); Institute for Visualization and Interactive Systems, 
Human-Computer Interaction and Cognitive Systems Department

University of Ulm

Institute of Software Engineering and Programming Languages

�
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�

�
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https://www.uni-hamburg.de/
https://www.tu-braunschweig.de/
https://portal.uni-koeln.de/
https://uol.de/
https://www.uni-rostock.de/
https://www.uni-stuttgart.de/
https://www.uni-stuttgart.de/
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