
1

Rasmus Adler, Frank Elberzhager, Rodrigo Falcão, Julien
Siebert, Eduard C. Groen, Jana Heinrich, Florian Balduf,
Peter Liggesmeyer (Editor)

A Research Roadmap for Trust-
worthy Dynamic Systems of Sys-
tems – Motivation, Challenges
and Research Directions

2

This report summarizes the results of DynaSoS, a research pro-
ject funded by the German Federal Ministry of Education and
Research (grant number: 01IS21104). The main outcome is a
research roadmap for the software engineering of trustworthy
dynamic systems of systems (dynaSoS). The research roadmap
for engineering dynaSoS was derived from interviews, expert
workshops, and a systematic literature study, performed along
the four phases of the project: Conceptualization, Characteri-
zation, Classification of challenges, and Recommendations.

In phase 1, use cases and example dynaSoS in several smart
scenarios were identified. Different scenarios highlight diffe-
rent aspects of dynaSoS. Visions such as smart mobility, smart
farming, or smart energy refer to dynamic systems of systems
that dynamically adapt their behavior to the current situation

in order to minimize required resources, reduce costs, improve
delivered services, or provide novel services. We also conside-
red cross-domain dynaSoS like smart cities that bring together
sector-specific dynaSoS in certain area. Next, in phase 2, the
use cases and example systems, together with the literature
review, served as input for the identification of the core cha-
racteristics of dynaSoS.

In phase 3, related research challenges were collected and
structured along three dimensions. The first dimension
describes how large the dynaSoS is, whether it comprises
other dynaSoS, and whether it belongs to a specific sector.
The second dimension refers to established characteristics
of systems of systems, such as the operational and manage-
rial independence of the constituent systems in a system of

Executive Summary

Figure 1: High-Level view of the roadmap towards trustworthy dynaSoS

3

systems. We added further characteristics to describe the role
of Big Data, AI, and Autonomy in dynaSoS. The third dimen-
sion refers to engineering aspects such as activities, processes,
or skills.

Finally, in phase 4, recommendations for further research were
derived and structured along two dimensions. One dimen-
sion refers to the potential impact of the research direction.
The other dimension indicates the time required to solve the
challenge.

As shown in Figure 1, the roadmap proposes six main research
topics that were derived during the course of the project:

1. Reliable data management: DynaSoS are data-intensive
systems, where different organizations may need to share
information and where value is created using data from
various sources. Reliable data management is a prerequisite,
which is hard to achieve in practice. »Data management«
is an overarching term that covers multiple data-related
aspects, such as data architecture, data acquisition, data
storing, data quality, data integration, and data governance.

2. Automated software engineering: DynaSoS compri-
se technical systems that are continuously developed by
different organizations. Unexpected evolution of some
software systems is common in this setting. The evolution
of the many non-technical systems is often also hard to
predict. Handling these unexpected evolutions of systems
before unwanted emergent phenomena occur increases the
demand for automated software engineering. This demand
is already very high and was highlighted by many system
engineers from industry.

3. Context-aware behavior: DynaSoS behave in a situa-
tion-specific way, which requires some form of context
awareness. Context awareness is the main challenge for
many autonomous systems, such as autonomous vehicles.
It requires the system to understand the current situation
so that it can anticipate future scenarios. The dynaSoS has
to understand the current situation so that it can anticipate
phenomena that emerge from the behavior of its systems.

4. Engineering of safe and highly trustworthy dynaSoS:
A dynaSoS typically provides essential services whose failure
is highly critical. Assuring that these failures will not occur
is challenging because the behavior emerges from complex
interactions of evolving systems. Many novel safety approa-
ches can contribute to dealing with this issue, but they are
not sufficient, even if harmonized and integrated.

5. Value-based engineering of dynaSoS: A dynaSoS shall
provide services so that it is in line with the current values
of society. This requires that regulatory constraints and the
economy support these values or even enforce them by pre-
scribing high-level targets or principles. Value-based engi-
neering refers to the challenge of getting from principles to
practice. It is related to safety engineering because safety is
a value. The difference is that it includes many values that
are harder to grasp, such as sustainability, but where less
rigor in assurance is demanded.

6. Complexity, emergent phenomena, and resilience: A
dynaSoS is a complex system that can generate emergent
phenomena. Resilience refers to the property that required
emergent phenomena are provided in spite of disturbances
and that disturbances will not lead to unwanted emergent
phenomena or a collapse of the dynaSoS. Complexity
science provides many theories and tools that need to be
enhanced and integrated into software engineering for
dynaSoS.

This list presents main software engineering research topics for
dynaSoS. We expect these results to be used to direct invest-
ments and further research in the field of dynaSoS and to
connect the multidisciplinary scientific community around the
topic.

4

Introduction . 6

Project Overview . 10
Phase 1: Conceptualization . 10
Phase 2: Characterization . 10
Phase 3: Classification of challenges . 10
Phase 4: Recommendations . 11

Use cases and example systems . 14
Motivation for conceptualization work . 14
Overview of application areas . 15
Analysis of cross-cutting aspects . 17

Dimensions of dynaSoS . 18
Motivation . 18
Dimension related to scope of dynaSoS . 18
Dimension related to the dynaSoS characteristics . 20
Dimension related to the engineering of dynaSoS . 22

Research Challenges . 24
Scope . 24
Complexity, emergent phenomena and resilience . 26
AI-Based autonomy . 27
Heterogeneity and openness . 28
Distributed systems . 30
Continuous and innovation-driven development . 30
Engineering . 31

Recommendations, research directions and roadmap . 35
Recommendation: Value-based engineering of dynaSoS . 35
Recommendation: Engineering of emergence and resilience . 37
Recommendation: Engineering of safe and highly trustworthy dynaSoS 39
Recommendation: Context-aware behavior in dynaSoS . 42
Recommendation: Automated software engineering for dynaSoS 45
Recommendation: Reliable data management for dynaSoS . 46
Roadmap . 49

Summary and outlook . 51

References . 54

Appendix A – German research landscape . 64

Impressum . 69

Table of contents

5

ADS Agricultural Data Space

AI Artificial Intelligence

CS Constituent system

dynaSoS Dynamic Systems of Systems (d lowercase)

DynaSoS The DynaSoS project (D capitalized

IoT Internet of Things

ML-OPS Machine Learning Operations

SDG Sustainability Development Goal

SE Software Engineering

SoS System of Systems

SoSE System of Systems Engineering

S&SE Systems and Software Engineering

VUCA Volatility, uncertainty, complexit and ambiguity

UN United Nations

List of abbreviations

6

The digital transformation is advancing across
industries, enabling products, processes, and
business models that radically change the way
we communicate, interact, and live together.
Systems, players, and markets that were once
isolated are being integrated by digital eco-
systems1. In this evolution, software-based
systems are the central anchor through which
value is added and desired system properties
are realized.

Existing digital platforms and ecosystems
already consist of complex networks of
interconnected and globally distributed
applications. Rapid advances in miniaturiza-
tion, storage capacity, intelligent information
exchange, and processing enable the digita-
lization of more and more diverse objects.
All visions of the future of technology – be
it production as a service in Industry 4.0,
autonomous transport systems in intelligent
mobility, or cyber-physical systems in digital
health – point to the fact that the future of
software engineering will have to deal with
systems that are increasingly large and diverse,
complex in scale and dynamics, and involve
more and more actors from different organi-
zations. In other words, the focus of software
engineering will increasingly be on the design
and development of dynamic, semi-autono-
mous Systems of Systems (dynaSoS).

Today, systems with characteristics similar
to dynaSoS already pose technical challen-
ges, particularly in terms of managing their
quality and complexity, and these challenges
will intensify with the technical advances of
and the growing demands on these systems.
Moreover, because of their scale (national,
transnational, or even global), these socio-
technical systems directly affect societies
(think, for example, of the propagation of
information – true or false – on social net-
works, or the management of a continental
energy network) and the environment (such
as the considerable impact cloud computing
has on greenhouse gas emissions (Gröger, et
al., 2021)). While there are challenges, there
are also opportunities: These dynaSoS harbor
the potential to solve the tensions between
pressing ecological, social, and economic
challenges; not least because of their ability to
integrate information from various sources at
large scales.

DynaSoS require an evolution of existing soft-
ware and systems engineering approaches
to ensure their reliable and secure operation
despite their high complexity. These approa-
ches must not only be able to handle the
complex interactions of technical subsystems,
but also the interactions between technology,
people, and the environment. The publicly

Introduction

This chapter opens the report motivating the existence of dynamic sys-
tems of systems – dynaSoS - and provides an overview of the rela-
tionship between its characteristics, research challenges, and research
recommendations.

1 https://s.fhg.de/studie-digitale-oekosysteme

https://s.fhg.de/studie-digitale-oekosysteme

Abstrakte Eisskulptur

7

funded project »DynaSoS« examined how the
current state of software engineering must
evolve to support a digital transformation in
the area of systems-of-systems development.
The goal of the project was to collect, consoli-
date, and present the current research challen-
ges regarding the development of dynaSoS in
order to create a research roadmap containing
recommendations and research directions.

The dimensions of dynaSoS, the research
challenges, and the recommendations,
together with their corresponding research
directions, are the key elements in the project.
Figure 2 provides an overview of how they
are related to each other. The dimensions are
used to cluster the research challenges, which
in turn can be traced to recommendations as
motivating challenges. In a similar vein, each
recommendation is associated with a certain
number of research directions.

Report structure

This report presents the results of the
DynaSoS project. It is structured as follows:
Chapter 2 presents an overview of the project
phases. Chapter 3 highlights the different use
cases and example systems that illustrate the
kinds of systems we understand by dynaSoS.
Chapter 4 introduces the dimensions we use
to frame dynaSoS and their corresponding
challenges. Chapter 5 presents the research
challenges, clustered according to the dimen-
sions of dynaSoS. In Chapter 6, we provide
six recommendations with corresponding
research directions and discuss the research
directions in the context of a bidimensional
research roadmap. Finally, Chapter 7 conclu-
des the report by presenting its limitations
and providing an outlook on the future of
dynaSoS.

8

Introduction

Figure 2. Traceability of challenge clusters, recommendations, and research directions.

Fußspuren im Schnee

9

10

Project Overview

In this chapter, we provide an overview of the four project phases and
explain how the output of each phase contributes to the subsequent ones.

The DynaSoS project was organized into four phases: (1)
Conceptualization, (2) Characterization, (3) Classification of
challenges, and (4) Recommendations. Figure 3 illustrates the
phases, high-level activities, inputs, and outputs.

Phase 1: Conceptualization

In the first phase, we investigated scenarios for dynaSoS in six
application domains (see Chapter 3). For each domain, the pro-
ject appointed a team of domain experts from Fraunhofer IESE
and the Technical University of Kaiserslautern, Germany. In the
activity »Identification of relevant use cases«, potential use
cases were elicited by (a) reviewing relevant literature, such as
roadmaps describing known problems, (b) drawing inspiration
from implementation examples and scenarios, and (c) perfor-
ming interviews with experts from industry and academia.
Figures 4, 5, 6, and 7 show the demographics of the partici-
pants – there were 97 individuals from 83 organizations.

The focus was on capturing the technological, societal, and
economic implications of dynaSoS and the role of systems
and software engineering regarding the use cases. The use
cases provided a basis for identifying crucial aspects such as
key stakeholders, possible business models, and variation
points. All these aspects must be considered in the design and
development of such systems. For example, a dynaSoS that is
not economically viable or is not accepted by society will not
be successful. These use cases supported the next activity, the
description of the example systems that would be necessary to
support the implementation of the use cases. These systems
were selected based on their ability to demonstrate typical
properties and challenges a dynaSoS will have in the respective
domain. Each system described an innovative dynaSoS that is
at least several years beyond the status quo, although existing
implementations might help to demonstrate its feasibility and
realistic expectations. Finally, the elaborated concepts were
improved and expanded upon at a more granular level, inclu-
ding visualizations and models. The application areas were free

to choose the appropriate format of these artifacts, which dif-
fered due to differences in the level of abstraction: While the
Smart Mobility and Smart City & Region scenarios take a bird’s
eye view of a metropolitan setting, Smart Farming and Smart
Manufacturing consider a specific application or production
site with selected machinery.

Phase 2: Characterization

Both use cases and example system descriptions were used as
input for the second phase, the characterization of dynaSoS. In
this phase, we searched for the domain-independent charac-
teristics that distinguish dynaSoS from other systems, that is,
a set of characteristics that are distinctive and therefore could
help differentiate dynaSoS from other types of systems, mainly
from traditional systems of systems (SoS). Furthermore, we
want these characteristics to underline the dynamic properties
that are found in these systems while keeping any overlap
between these characteristics at a minimum.

For this purpose, we performed a series of internal workshops
in which we iteratively explored and challenged properties
that characterize dynaSoS. In addition to the results of the first
project phase, we also took the literature into consideration,
in particular the classical properties of SoS, to determine (1)
the extent to which these support the description of dynaSoS,
(2) what aspects regarding dynamism have not been defined
yet, and (3) what other aspects are potentially missing. This
phase produced a set of characteristics of dynaSoS (see Section
»Dimension related to the dynaSoS characteristics«).

Phase 3: Classification of challenges

In the third phase, we investigated research challenges associa-
ted with dynaSoS and classified them according to a classifica-
tion framework, which we refer to as a research architecture.
The characteristics of dynaSoS identified in phase 2, together

11

Project Overview

with categorizations concerning the scope and the engineering
of dynaSoS, provided the three dimensions of the framework.
They aimed at classifying challenges related to the enginee-
ring of dynaSoS. The framework was developed and debated
through internal workshops at Fraunhofer IESE and external
workshops with the participation of expert academics in the
field from different research institutions and universities in
Germany (see demographics of the participants in Figures 8
and 9).

With respect to the concrete research challenges, we used a
two-fold search strategy. On the one hand, we reviewed the
literature covering the research challenges for dynaSoS-related
systems such as cyber-physical systems, IoT-based systems,
adaptive systems, complex systems, and autonomous systems.
We extracted more than 240 challenges from 91 papers (see
visual depiction of the core aspects of the literature review in
Figure 10). On the other hand, we elicited further challenges
in the aforementioned internal and external workshops. After
identifying, prioritizing, and clustering them, we organized

them according to the dimensions of the research architecture.

Phase 4: Recommendations

Finally, we derived research recommendations to address the
prominent challenges to engineering dynaSoS. Each recom-
mendation relates to some challenges previously identified and
is accompanied by a set of potential research directions that
can be pursued to fulfill the recommendation.

Summary

The project DynaSoS was organized into four phases: Con-
ceptualization, Characterization, Classification of challenges,
and Recommendations, which were briefly described in this
chapter. In the next chapter, we will present the outcomes of
the first phase: the use cases and example systems we defined
to help identify the characteristics of dynaSoS.

Germany

Austria

Sweden

Switzerland

Estonia

Singapore

The Netherlands

72

3

3

2

1

1

1

Figure 3. Project phases, high-level activities, input, and output.

Figure 4. Frequency of organizations per country (N=83 organizations).

12

Project Overview

Smart Mobility

Smart Manufacturing

Smart Healthcare

Smart Farming

Smart Energy

Smart City & Region

Cross-cutting analysis

17

8

21

10

9

17

15

Manager

Project/Team leader

Employee

Director

Other (consultant, business development)

Director

Project/Team leader

Professor

Manager

Researcher

Manager

Project/Team leader

Manager

Director

13

11

11

5

4

12

11

 Industry (N=44)

 Research (N=43)

 Public administration (N=5)

 Association (N=5)

8

8

4

5

3

1

1

Companies

Startups

Infrastructure

Institutes

Universities

Public authorities and politics

Associations, unions

36

3

2

18

14

5

5

 Industry (N=41)

 Research (N=32)

 Public administration (N=5)

 Associations (N=5)

Figure 5. Frequency of organizations per type (N=83 organizations).

Figure 6. Frequency of role per organization type (N=97 individuals).

Figure 7. Frequency of participants per application domain (N=97 individuals).

13

Employee

Project/Team leader

Manager

Director

Professor

Researcher

Manager

Project/Team leader

Employee

3

2

1

1

4

3

1

1

1

 Industry (N=7)

 Research (N=8)

 Association (N=2)

Companies

Universities

Institutes

Associations, unions

7

1

7

2

 Industry (N=7)

 Research (N=8)

 Association (N=2)

Figure 8. Participants in the external workshops per organization type (N=17).

Figure 9. Participants of the external workshops per role (N=17).

Figure 10. Visual depiction of the literature review regarding challenges in dynamic systems of systems.

Systems of
systems

Challenges

Dynamic

Literature review

Title

Title,
abstract,
keywords

TITLE("systems of systems" OR "multi agent" OR "agent
oriented" OR "agent based" OR "IoT" OR "internet of
things" OR "Cyber Physical Systems" OR "CPS" OR

"complex adaptive systems" OR "adaptive systems" OR
"complex systems" OR "digital twin“)

TITLE({research agenda} OR "opportunities" OR
"roadmap" OR {research roadmap} OR "issues" OR

"challenges" OR "vision" OR "trends“)

TITLE-ABS-KEY(dynamic)

Recent years PUBYEAR > 2012
Time

constraint+90
selected papers

+240
challenges

Schneebedecktes Kliff mit

Brücke

14

Use cases and example systems

In this chapter, we present the use cases that we created for six application
areas of dynaSoS and their corresponding example systems. Furthermo-
re, we also provide a transversal analysis of dynaSoS across the different
domains.

Motivation for conceptualization work

Envisioning systems that are not yet in place – such as dyna-
SoS – requires people to imagine an innovative future before
research challenges and recommendations can be proposed for
them. Because the vision of dynaSoS is years beyond the status
quo, abstract concepts such as autonomous, dynamic, reliable,
and domain-agnostic systems are difficult to grasp. Individuals
tasked with designing this vision need tangible examples to
be able to understand the subject matter in depth, justify the
benefits of dynaSoS, and determine their feasibility. Without
referring to specific instances, it is also difficult to communica-
te these aspects to the public.

As a result, a significant portion of the project was dedicated
to identifying relevant use cases and describing representa-
tive example systems. These activities made the concept of
dynaSoS tangible. To increase the chance that the findings of
DynaSoS can be extrapolated to other domains, we conside-
red six application areas where dynaSoS are expected to play
a crucial role in the foreseeable future: Smart Farming, Smart
Manufacturing, Smart Mobility, Smart Healthcare, Smart
Energy, and Smart City & Region. This provided the necessary
depth to identify and explicitly consider important domain-
specific properties. The six use cases we defined were publis-
hed as a whitepaper (Groen, et al., 2022), and four example
systems were presented in a blog entry on the DynaSoS project
website2.

2 https://dynasos.de/news/

https://dynasos.de/news/

15

In the conceptualization phase, we essentially translated the
abstract visions into realistic scenarios in a given application
context. This way, the scenarios help practitioners and resear-
chers understand what the contributions of different dynaSoS
(use cases) might reasonably be, and what those systems could
look like from a technical perspective (example systems). Furt-
hermore, the scenarios provided an indispensable discussion
basis to envision those systems when composing and deriving
the requirements, research architectures, research challenges,
and recommendations regarding dynaSoS. A better unders-
tanding of the concept helped us to estimate the degree of
automation, the ways these systems are interconnected, and
the potential for innovative technologies.

While the use cases focused on the challenges that needed
to be solved, the example systems illustrated how dynaSoS
could practically solve or mitigate some of the urgent prob-
lems. Moreover, the use cases allowed us to investigate their
economic advantage in highly regulated domains as well as
their effect on increased compliance with the standards and
regulations that cannot be attained by the state of the art.

Overview of application areas

The application areas provided the following use cases and
example systems:

Smart Farming

Among the many shifts towards Digital Farming, crop protecti-
on is an important building block for food production. The lack
of technical interoperability between interfaces and dynamic
coupling of systems currently prevents the vision of treating
every plant on the field individually from being realized. The
vision requires the Farm Management Information System, sen-
sors, autonomous agricultural vehicles, weather information
systems, and other systems to exchange data. A dynaSoS can
contribute to many things, including actively monitoring the
application of crop protection products, preventing excess drift
of pesticides to surrounding areas, detecting pests before they
are perceptible by the human eye, and reacting accordingly.
This requires high data quality in dimensions such as reliability,
granularity, and timeliness. This vision was described in the use
case »Reducing goal conflicts in the sustainability triangle in
crop protection through consistent digitalization«.

The example system involves drones with sensors and satellites
to determine the condition of the soil and the plants. Parts of
the concept can also be transferred to other agricultural pro-
cesses like fertilization. The description of the example system
was »Dynamic and connected: To what extent will future crop
protection be digital?«3

3 https://dynasos.de/2022/09/30/dynamisch-und-vernetzt-wie-digital-wird-der-pflanzenschutz-in-zukunft-sein/

https://dynasos.de/2022/09/30/dynamisch-und-vernetzt-wie-digital-wird-der-pflanzenschutz-in-zukunft-

16

4 https://dynasos.de/2022/10/14/dynamisch-rekonfigurierbare-produktion-mittels-dynamischer-systems-of-systems-vorgestellt-anhand-eines-beispiels/

5 https://dynasos.de/2022/10/07/smarte-lieferzonen-als-dynamisches-system-of-systems/

Smart Manufacturing

Production lines are typically configured manually in order
to be statically assigned to one specific production asset. By
introducing technology that allows a production line to be
dynamically reconfigured to a different production asset,
costly shutdowns of the production line for reconfiguration
purposes can be avoided. This vision was described in the use
case »Dynamically reconfigurable production through virtual
production lines«4.

The example system, named »Dynamically reconfigurable
production using dynamic systems-of-systems demonstrated
with an example«, demonstrates how a Manufacturing Execut-
ion System (MES) performs production planning using virtual
production lines. This planning not only improves the static
assignment of production assets, but can dynamically share
production plans and assets with other digital production
lines to maximize efficiency. Part of the dynamic adaptivity of
SoS relies on systems to describe their capabilities and skills to
other systems. This enables the MES to orchestrate the systems
independent of a device’s manufacturer or type by comparing
these systems, conducting feasibility checks, and assigning
production tasks. Flexibility of the shop floor can, for example,
be promoted through flexible transportation systems such as
Automated Guided Vehicles, Autonomous Mobile Robots, or
autonomous forklifts.

Smart Mobility

Urban mobility is associated with pollution, stress, and costs,
which can be reduced by improved traffic flow. Parcel delivery
greatly benefits from curbside management solutions, such as
dynamic assignment of loading zones. A dynaSoS for mobi-
lity relies on high interdependence and dynamic coupling to
operate within the continuously changing traffic flow. If this is
achieved, it can contribute to reduced emissions and improved
quality of life in the city. This vision was described in the use
case »Dynamic delivery zones for optimized inner-city goods
and delivery traffic«.

The example system »DynaZone«, described in the article
»Smart delivery zones as a dynamic system-of-systems«5, pro-
poses monitoring smart parking zones using sensors and assig-
ning priority tokens to reserve a zone. The system can assign
zones for the predefined route of a parcel delivery vehicle and
dynamically adapt to changes, such as delays or a DynaZone

getting reassigned to an emergency response vehicle that has
higher priority, while violators are fined to ascertain the conti-
nued availability of DynaZones.

Smart Healthcare

ATMPs are concentrated therapeutic agents such as CAR-T
cells, microbiota, or mRNA. They can be used for personal
medicine in which a single patient receives an individually pro-
duced ATMP (e.g., for cancer treatment), and for vaccines. The
manufacturing process of ATMPs is highly manual, resulting
in time-consuming and cost-intensive production, and only a
limited number of patients that can be treated with ATMPs. To
achieve a flexible, scalable, and automatable production chain,
the systems currently in use need to be able to interoperate
properly, not just for orchestrating the production steps, but
also for strict quality control, including measurements, sterility,
bioreactive processes, and the associated automated data ana-
lysis. This vision was described in the use »Smart Production of
Advanced Therapy Medicinal Products (ATMP)«. Because the
concepts for automating ATMP production follow the princi-
ples of Industry 4.0, this use case is considered a special instan-
ce of the example system of Smart Manufacturing.

Smart Energy

Organizing the energy grid into small and local energy cells
supports the increased demand for flexibility while the grid
is becoming more complex due to the growing number of
energy consumers, generators (some of which are regenerative
and volatile), and storage options. Using AI, these cells can
autonomously balance their production and consumption. In
essence, the dynaSoS performs »energy cell management« –
compensating for energy surpluses and deficits at higher-level
cells and converting the energy into different voltages. This
vision was described in the use case »A connected cellular
energy system for complexity control at a granular level«.
Because the energy grid is a part of the infrastructure, most
visibly that of urban areas, this use case is considered part of
the example system of Smart City & Region.

https://dynasos.de/2022/10/14/dynamisch-rekonfigurierbare-produktion-mittels-dynamischer-systems-of-
https://dynasos.de/2022/10/07/smarte-lieferzonen-als-dynamisches-system-of-systems/

17

Smart City & Region

Factors such as urbanization, demographic and climatic
changes, and people‘s habits influence the demand for
simultaneous use of space, constraints on the use of resources
(water, energy, money, skills), and the possibilities for imple-
menting climate protection and adaptation measures in urban
environments. One of the current challenges facing experts
in the field is the ability to acquire real-time information of
sufficient quality to support decision-making regarding the
organization and development of urban areas. More futuristic
approaches explore the possibility of multi-functional systems
(e.g., connected and adaptive blue-green infrastructure) that
adapt to the needs and constraints of cities (e.g., rainwater
harvesting umbrellas, vertical gardens and living moss walls,
temporary and mobile forests6). This vision was described in
the use case »Self-driving trees: Blue-green infrastructure that
adapts to a city’s needs«. The example system described in
the article »Urban sustainability through dynamic systems of
systems«7 illustrates how a dynaSoS approach could potentially
help by making blue-green infrastructure more adaptable and
connected.

Analysis of cross-cutting aspects

In order to identify dependencies between the application
areas, we iteratively performed a cross-cutting analysis. This
analysis aimed to steer and align the selection of use cases to
fulfill three objectives:

1. Aligning the use cases with the notions of SoS that exist in
S&SE;

2. ensuring that different kinds of SoS are considered; for
instance, we wanted to make sure that not all use cases
deal with swarms of robots because large-scale dynaSoS
like intelligent traffic systems or smart grids are likely to face
different kinds of challenges;

3. making sure that domain experts have S&SE challenges in
mind, meaning that they should provide illustrative example
use cases of their application domain that are sufficiently
profound to address these challenges.

To perform the analysis, a cross-sectional team with expertise
in SoSE conducted workshops with experts from the respective
domains. An important activity involved the consolidation and
uniformization of definitions within the project, and the achie-
vement of a common understanding of dynaSoS and SoS.

Next, we discussed key aspects of dynaSoS, such as the
importance of AI, the manifestation of dynamic coupling bet-
ween the constituent systems, and the ways in which virtua-
lization of the systems adds value. These aspects were found
to manifest themselves differently in the different application
domains. The cross-cutting analysis helped to sharpen the
common scope of the domains. For example, virtualization
has played a major role in Smart Manufacturing ever since the
rise of Industry 4.0. For Smart Farming, on the other hand, it
is a new challenge, as not only agricultural machines but also
natural systems may be transformed into Digital Twins within
a dynaSoS. Aspects such as safety are particularly relevant
in areas where an increased risk of physical injury is to be
expected.

The cross-cutting analysis demonstrated that further develop-
ment of systems engineering (SoSE) must be considered as a
major research aspect. SoSE builds on the domain of traditio-
nal SE. It helps to cope with the high complexity of system net-
works and to understand dependencies. So far, in the domains
considered, only a few SoSE methods have been applied, such
as (Mennenga, et al., 2020). To close this research gap, we
investigated the current challenges in SoSE through an inter-
view study resulting in 36 clusters of statements. These were
then prioritized by importance and the potential for research
to contribute to a solution. The investigation resulted in 13
challenges for the realization of dynaSoS, which were consoli-
dated in the final results (Balduf, et al., 2022).

Summary

We elaborated the use cases and example systems in detail to
make sure we attained the highest possible quality in pain-
ting a meaningful and robust picture of dynaSoS for different
application areas. In turn, the use cases and example systems
support the identification and derivation of typical characteris-
tics of dynaSoS. The characterization of dynaSoS is the focus
of the next chapter.

6 https://arcadia.frl/de/projecten/bosk/

7 https://dynasos.de/2022/11/29/nachhaltigkeit-in-urbanen-raumen-durch-dynamische-systeme-der-systeme/

https://arcadia.frl/de/projecten/bosk/
https://dynasos.de/2022/11/29/nachhaltigkeit-in-urbanen-raumen-durch-dynamische-systeme-der-systeme/

18

Dimensions of dynaSoS

Motivation

The first phase of the project involved gathering evidence on
examples of forward-looking software systems. The second
phase of the project aimed to consolidate this material and
develop a framework to help define the characteristics of
dynaSoS, reflect on the evolution of current software sys-
tems, and systematically organize research challenges related
to dynaSoS. This framework is called a research architecture
and consists of three core aspects: scope, characteristics, and
engineering, each of which has different dimensions. Each
aspect and its dimensions are described in more detail in the
following sections. An overview of the research architecture is
given in Figure 11.

Dimension related to scope of dynaSoS

DynaSoS can have completely different scales. Consider,
for instance, a few collaborative robots in a factory versus a
complete smart city or a global supply network. The scale has
an impact on the engineering challenges and is illustrated in
Figure 12. On the left of Figure 12, one can see some colla-
borating robots and drones that together form an SoS. The
robots and the drones are the constituent systems (CS) of the
SoS. If none of the constituent systems in an SoS is an SoS
itself, we call the SoS atomic. Otherwise, we call it hierar-
chical and refer to hierarchy levels for the depth of its nested
structure.

Dimensions of dynaSoS

In this chapter, we introduce the research architecture of dynaSoS, a classifi-
cation framework we used to characterize these systems.

Figure 11. Overview of the three dimensions in the research architecture

Abstrakte Aufnahme von Gletscher

19

A second aspect is whether an SoS is limited to a single
domain or not. If an SoS belongs to a single application
domain such as mobility or energy, we call it vertical. Other-
wise, we call it horizontal.

A third aspect concerns the geographic distribution. To descri-
be this aspect, we use terms such as local, regional, natio-
nal, supranational, and global.

The three aspects are loosely related to each other. Atomic SoS
tend to be local and vertical. Hierarchical SoS can be local and
vertical, but the higher the hierarchy level, the more likely the
SoS is horizontal and the more likely it has a wider geogra-
phic distribution. According to these loose dependencies,
we roughly distinguish between four kinds of SoS, which are
illustrated in Figure 12 and described in the following.

Small vertical atomic dynaSoS: Small, atomic, vertical dyna-
SoS are some (autonomous) robots, drones, or other machines
that collaborate to implement a domain-specific task. In doing
so, they can dynamically adapt to various context conditions.
This dynamism is often enabled by AI and not considered in
conventional SoS.

For instance, a swarm of field robots may collaborate when
weeding. The CS of these SoS might be developed from
scratch because they did not previously exist. For instance, a
farmer may have only conventional agricultural machinery but
no field robots that are able to collaborate. A manufacturer
of agricultural machinery will likely develop collaborative field
robots independently from existing conventional agricultural
machinery because the latter have no collaboration capabili-
ties. It is thus rather a development from scratch than evolutio-
nary development. Furthermore, the manufacturer might do

this without considering collaboration with field robots from
other manufacturers. This means that the SoS characteristic
»managerial independence« might not be fulfilled.

Vertical hierarchical dynaSoS: A vertical hierarchical dyna-
SoS involves various systems (including SoS) from the same
vertical. It collects information from its CS and dynamically
influences their behavior.

For instance, an Agricultural Data Space (ADS) may collect
information to decide when it is time for weeding or irrigation.
Based on this information, it tells weeding robots and irrigation
robots how to do their job. The ADS and all the systems that
are connected to it form a vertical hierarchical dynaSoS. Similar
data spaces or platforms are envisioned in other verticals. For
instance, the vision of shared multi-modal mobility requires
all means of transportation to be connected to platforms that
organize the matching between mobility demands and offers.
A smart grid requires a platform that organizes the matching
between flexibility demands and offers.

The basis for these dynaSoS is more and/or better information
and communication technology (ICT). Existing SoS in various
verticals are transformed by introducing ICT and by using the
information to dynamically control and adapt processes in
these verticals. Often, a lot of information needs to be proces-
sed in a very short timeframe. This rapid processing typically
goes beyond human skills and motivates the application of
technology, including AI-based control or AI-based recommen-
dations. Thus, ICT and AI are enablers for the transformation
from SoS to dynaSoS. ICT and AI were already known when
Maier introduced the SoS characteristics in 1998, but the tech-
nological possibilities have grown tremendously since then.
Moreover, there is increasing awareness and political pressure

20

Dimensions of dynaSoS

that existing SoS in domains such as energy, mobility, and agri-
culture, to name but a few, have to be transformed in order to
achieve sustainability objectives (Niestroy, et al., 2020).

Horizontal hierarchical dynaSoS: A horizontal hierarchical
dynaSoS involves various systems (including SoS) from different
verticals. It collects information from its CS and dynamically
influences their behavior.

A prominent example is a smart city that integrates a smart
energy dynaSoS and a smart mobility dynaSoS. Another exam-
ple is a food supply chain that dynamically adapts how goods
are transported depending on the current prices for possible
transportation means. It involves systems from smart farming,
smart manufacturing, and smart logistics.

Large holistic dynaSoS: The attributes large and holistic refer
to sustainability. Following popular definitions of sustainabi-
lity, we consider it something as holistic if it includes at least
ecological, social, and economic dimensions. Furthermore, we
consider it as something that refers to planetary boundaries
(Rockström, et al., 2009). Consequently, engineering sustaina-
bility requires considering the entire planet, define goals at this
level, and break them down to so that they can be allocated to
something, that is, to large-scale dynaSoS.

A prominent example of engineering sustainability at a global
scale is given by the 17 UN Sustainability Development Goals

(SDG). These global objectives can be broken down into supra-
national objectives. For instance, the European Commission
addresses the SDGs with the European Green Deal and other
concepts (EU Commission, 2020). These objectives are further
broken down to nations and verticals such as energy, trans-
portation, production, and agriculture. Establishing reasonable
global goals and breaking them down in a reasonable manner
requires analyzing the interaction between biological/ecologi-
cal systems, social/economic/political systems, and technical
systems. These systems are loosely coupled, geographically
distributed, evolve permanently, and generate emergent
behavior. Furthermore, the interaction between the systems
is of a dynamic kind, as described in (Scoones, et al., 2007):
»‘Dynamics’ refers to the patterns of complexity, interaction
(and associated pathways) observed in the behavior over time
of social, technological and environmental systems«. The right
part of Figure 12 illustrates the interaction between biological/
ecological systems, social/economic/political systems, and the
»mediating role of technology in altering and being altered by
natural and social-political systems« (Scoones, et al., 2007).

Dimension related to the dynaSoS characteristics

We base our definition of the characteristics of dynaSoS on
previous work in the domain of SoS. The literature on SoS
usually defines five major characteristics: managerial indepen-
dence, operational independence, evolutionary development,

Figure 12. Illustration of different scopes of dynaSoS

Gletscherfluss und Bäume

21

Dimensions of dynaSoS

geographic distribution, and emergent behavior (Maier, 1998;
Gorod, et al., 2008). We extended and reorganized these
initial five SoS characteristics into dynaSoS characteristics. The
motivation comes from the increased usage and application of
AI, autonomous systems, Big Data, and data science. In total,
six categories were chosen:

Heterogeneous Open Systems (Managerial Independence &
Operational Independence)
Continuously Improved & Innovation-Driven (Evolutionary
Development)
Complex Systems (Emergent Behavior)
Distributed Systems (Geographic Distribution)
Data-Intensive Systems
AI-based Autonomy of Constituent Systems

These categories were chosen because they give rise to
challenges that do not necessarily overlap with each other but
cover the full range of dynaSoS issues.

Heterogeneous Open Systems (Managerial Indepen-
dence & Operational Independence): DynaSoS are com-
posed of systems that operate independently and are often
managed by different organizations. This typically leads to
heterogeneity on multiple levels. On the technological level,

different hardware and software technologies may need to
interact. On the organizational level, different parties may have
to agree on common goals and to synchronize their processes
while pursuing their particulars goals, which may not always
converge on the overarching goal of the system of systems
to which they belong. An important property is operational
independence. This property implies that any constituent
system that is part of an SoS can be operated independent of
the others and would still work if the SoS was disassembled.
Operational independence contributes dynamics because a
constituent system is not bound to an SoS. It is loosely coupled
and can also contribute to other SoS with its capabilities. It
also implies that the constituent systems have an (open) inter-
face for collaboration. Managerial independence is a related
characteristic of an SoS. It means that constituent systems in
an SoS are managed independently and their owners may be
evolving the systems to meet their own needs. Managerial
independence is not a technical characteristic but a major
cause of many systemic non-technical issues that hinder inter-
operability and lead to heterogeneous systems. Furthermore,
the interfaces of constituent systems from different verticals
are likely not interoperable. Together, these characteristics
relate to the software-related research around open and hete-
rogeneous systems as well as related interoperability issues.

22

Dimensions of dynaSoS

Continuously Improved & Innovation-Driven Systems
(Evolutionary Development): DynaSoS are not only
developed and managed by different organizations, but also
continuously enhanced. Novel features are constantly shipped
into production, and novel systems need to be integrated and
tested, whereas older systems may be retired. In that sense,
the development of dynaSoS can be seen as a continuous and
evolutionary process. Consequently, a dynaSoS will evolve
incrementally rather than being ‘delivered’, as normally envisio-
ned in a single system development or acquisition. Considering
continuous software engineering, the timeframe between
incremental steps can be very short.

Distributed Systems (Geographic Distribution): Like all
SoS, dynaSoS are inherently distributed systems. They are not
only developed by different entities, but the constituent sub-
systems may also be physically located in different places and
interconnected through communication networks. In many
cases, the location of the cyber-physical constituent systems
with their execution platforms may change as they are mobile.
Another aspect is the dynamic allocation of software functions
to execution platforms. The characteristic »geographic dis-
tribution« can lead to various regulatory challenges. However,
related research challenges rather address regulatory science
than software engineering/research. Geographic distribution
implies that there is potential for dynamic allocation of soft-
ware functions to execution platforms, and opens up new
opportunities for efficiency. This and other topics of distribu-
ted systems are more relevant from a software engineering/
research perspective. Research on distributed systems has a
long tradition and forms a research field on its own.

AI-based Autonomy: DynaSoS include constituent systems
that act autonomously. This means that they are not control-
led or operated by a human operator. Therefore, they have to
sense and understand the environment. Based on this context
awareness, which can also include anticipation of future sce-
narios, they make decisions and act accordingly. Depending on
the degree of autonomy, there is no human supervisor, or the
human is only partially in the loop. In contrast to conventional
automation, autonomy comes with the notion of a program-
med-self because dynaSoS act in a very situation-specific way,
and even designers can often not explain upfront how the
systems will behave in particular situations. A typical reason for
the latter black-box behavior is the use of AI. Context awaren-
ess is often the key capability needed in order to react properly
to operational situations. AI-based autonomy is one aspect
that characterizes the difference between SoS and dynaSoS.

Data-Intensive Systems: Another aspect is that dynaSoS are
data-intensive systems. Kleppmann defines an application as
data-intensive »if data is its primary challenge – the quantity
of data, the complexity of data, or the speed at which it is
changing – as opposed to compute-intensive, where CPU

cycles are the bottleneck« (Kleppman, 2017). This is equiva-
lent to the concept of Big Data. In simple terms, Big Data is a
situation that occurs when conventional approaches to data
processing (i.e., moving data from storage to the main com-
puter memory for processing, and then moving the results to
storage) become virtually unfeasible or too expensive. Big Data
can occur because the amount of data is simply too large to be
processed by the computer at hand. It can also occur because
the speed at which the data must be processed is too deman-
ding (Laney, 2001) (Das, 2020).

Complex Systems (Emergent Behavior): Emergence occurs
when a system is observed to have properties that its consti-
tuent parts do not have on their own. Such emergent proper-
ties or behaviors arise from interactions between constituent
systems. In addition, an emergent phenomenon affects its
constituents: There is a feedback loop between the whole and
its parts (Siegenfeld, et al., 2020; Parrend, et al., 2022). At least
two levels of abstraction are needed to see, understand, and
control emergent phenomena: the micro level, which describes
the components, and the macro level, which describes the
system as a whole.

A traffic jam (e.g., on a motorway) is a simple example of
emergent phenomena. The cars are the micro-level com-
ponents. The traffic jam is the emergent phenomenon that
happens at the macro level. A traffic jam can occur when
cars interact and slow down, e.g., because of merging lanes
or an accident. A traffic jam is a phenomenon with its own
dynamics. It flows in the opposite direction of the cars and
can spread in space (some can grow to several kilometers in
length) and in time (sometimes even when the source of the
slowdown is no longer present). Incoming cars are also affec-
ted by the traffic jam: They also have to slow down.

Some emergent phenomena are desirable, while others are
unwanted. For instance, an intelligent traffic management
system may generate emergent behavior that optimizes traffic
flow, but other phenomena may lead to a traffic jam.

Dimension related to the engineering of dynaSoS

Over the years, software engineering tasks, processes, and
methods have co-evolved with the type and scale of the soft-
ware systems being engineered (Booch, 2018). For example,
the recent increase in the use of AI-based software systems
has raised new challenges for software engineering, and
both technical (e.g., data version control, feature stores) and
non-technical (ML-Ops, data and AI governance strategies)
solutions are currently emerging (Martinez-Fernández, et al.,
2022). The life cycle of software systems and the correspon-
ding software engineering activities will continue to evolve in
response to changes in the scale and complexity of software

23

Dimensions of dynaSoS

systems, as well as in response to the societal, economic, and
environmental constraints (like moving toward a circular eco-
nomy) that will apply to these systems.

Engineering Philosophies, Culture, and People: As
digitalization and software continue to affect all domains, the
demand for software engineering competencies will continue
to grow. Furthermore, the scale and complexity of the systems
being designed is also changing the set of skills software
engineers need to acquire (think of data privacy, algorithmic
fairness). For instance, the last two decades have seen the
emergence and adoption of philosophies such as agile, chaos
engineering, Site Reliability Engineering, or DevOps, which
have been fueled by existing software engineering challenges
and ideas from manufacturing practices or complex systems
sciences, and are now spreading to other domains (e.g.,
agile administration). We foresee that the evolution toward
cross-functional, transdisciplinary, and more diverse teams
will continue, including more socio-technical and environ-
mental competencies. This is because dynaSoS imply even
more collaboration and communication between organizations
having different, sometimes even conflicting goals, strategies,
cultures, and processes.

Software engineering lifecycle, activities, and proces-
ses: As mentioned above, software engineering co-evolves
with the software systems being developed. Although it is
difficult to imagine what novel software engineering activities

will happen in the future, we can foresee that systems such
as dynaSoS will require novel software engineering tasks. The
current state-of-the-art descriptions of software engineering
activities, such as the SWEBOK8 categories and continuous
software engineering (Bosch, 2014; Farley, 2022; Antonino, et
al., 2022; Humble, et al., 2010; Klotins, et al., 2022; Fitzgerald,
et al., 2017), provide an overview of software activities as of
today. As systems evolve toward dynaSoS, there will be the
need to adapt and reinvent some software activities (see, for
instance, the specific changes brought on by the use of AI
for requirements engineering (Scharinger, et al., 2022) and
for testing (Zhang, et al., 2022), or the recent advances in
code generation through large deep learning models such as
OpenAI Codex (Puryear, et al., 2022)).

Summary

The research architecture with its three core dimensions Scope,
Characteristics, and Engineering, together with their asso-
ciated categories, provides a framework for navigating the
universe of dynaSoS. This framework formed the basis for the
classification of the research challenges presented in the next
chapter.

8 http://swebokwiki.org/Main_Page

http://swebokwiki.org/Main_Page

24

Humanity currently faces environmental, sanitary, and geopoli-
tical crises that compel us to consider the implications of soft-
ware systems and their potential to sustainably solve (or help
solve) these crises. In a less technical sense, they also force us
to reconsider the way we think and act. Indeed, the evolution
of software systems by scale is accompanied by changes in
how we manage projects (e.g., by introducing more agility,
more cross-functional teams; see DevOps and VUCA approa-
ches), and distribute and evaluate software (e.g., by using
more open-source solutions, automating testing and deploy-
ment, or evaluating the fairness of automated decisions). On
the one hand, dynaSoS can be one of the keys to implemen-
ting solutions to present and future crises. On the other hand,
engineering dynaSoS is challenging, and failures may have
catastrophic consequences on society and the environment. In
the following, we present the challenges related to dynaSoS
that we derived from the literature and several workshops.
These challenges were classified according to the dimensions
presented in the previous chapter.

Scope

The first dimension distinguishes between different types of
dynaSoS ranging from small, atomic dynaSoS like a swarm of
robots to large-scale dynaSoS connecting various technical,
social, ecological, political, and other kinds of systems around

the globe (Peter, et al., 2014). The challenges depend a lot on
the type of dynaSoS and the related engineering scopes. The
scope of engineering for many dynaSoS is given by regulatory
constraints and business cases. It is very complex to develop
these laws in such as way that they will lead to a sustainable
world (i.e., living within the planetary boundaries) (Niestroy,
et al., 2020). The modeling and analysis of large-scale dyna-
SoS can help to cope with this complexity and to solve this
interdisciplinary challenge involving regulatory science, comple-
xity science, sustainability science, and ethics. This may lead
to a novel transdisciplinary role of S&SE that goes beyond the
traditional transdisciplinary focus on mechanics, electronics,
and software.

Defining government structures and drafting regulations is
paramount in steering the evolution of large-scale SoS. Howe-
ver, regulations can only pinpoint a rough direction because
it is neither possible nor reasonable to regulate everything
in detail. This is especially true for the detailed behavior of
constituent systems and the related emergent behavior of a
dynaSoS. As the behavior of technical systems is implemented
by means of software, software engineers can significantly
influence the direction of the digital transformation. This leads
to the challenges described in the following sections. Deve-
loping laws to amend regulatory constraints and economic
conditions for business models goes beyond the scope of the
DynaSoS project.

Research Challenges

In this chapter, we list 24 research challenges for dynaSoS. These challenges
were clustered according to the dimensions of the research architecture.
While the dimensions »Scope« and »Engineering« provided one challenge
cluster each, the dimension »Characteristics« contributed six clusters – one
for each characteristic.

Eisberg und tiefes Wasser

25

26

Research Challenges

Value-based-engineering and environmental, societal
impacts
It is challenging to bridge the gap from values of societies to
practice in SE. Software-related design decisions can have a
huge environmental and social impact (Schneider, et al., 2022).
The growing trend toward connected objects, cloud compu-
ting, and increased digitalization opens up many opportuni-
ties for collecting relevant information for shaping the digital
transformation of SoS and to engineer dynaSoS for a better
world. It is necessary and challenging to understand and
control the impact of technical systems on ecological systems,
societies, and individuals. Safety science and safety enginee-
ring provide many approaches for dealing with safety risks, but
these approaches are not sufficient when it comes to autono-
mous behavior of constituent systems, emergent behavior of
dynaSoS, or other values like fairness or sustainability. Value-
based engineering as described in IEEE 7000 (IEEE Computer
Society, 2021) already addresses some of these issues, but
these aspects are still not a mainstream component in the SE
curriculum (Casañ, et al., 2020).

Resilience and potentially unknown impacts
History has shown that many technological risks were
unknown until scaling up the technology led to severe
consequences. Many dynaSoS are large-scale systems where
scaling effects can be achieved very fast. Software updates can
fundamentally change the behavior of constituent systems in
dynaSoS. On the one hand, this makes it possible to instantly
react to identified risks that were not foreseeable. On the
other hand, this way of dealing with unknown unknowns
affects the overall dynamics of the dynaSoS and may steer it
towards tipping points. Performing risk management is only
possible if risks are known. Instead, common approaches from
security engineering to address unforeseen attacks may be
more applicable. However, this kind of bug-fixing with respect
to malicious faults is fundamentally different from controlling
the interaction of technical constituent systems with other
constituent systems in a dynaSoS. The technical constituent
systems have to behave in a way that assures that the ove-
rall dynaSoS will remain in a state that is at a safe distance
from any critical (tipping) points or conditions. For instance,
flexibility management software in a smart grid has to protect
the overall dynaSoS from power network overloads that would
cause power outages.

Complexity, emergent phenomena and resilience

DynaSoS are complex systems that may be confronted with
emergent phenomena. The main challenge with emergent
phenomena is that they are relatively difficult to predict. This is
due to the fact that the number of possible interactions grows
exponentially with the number of interconnected systems. It

is therefore simply impossible to monitor all possible interac-
tions. In addition, the effect of interactions is often non-linear.
This means that small changes can have large consequences
(butterfly effect). The effect of an intervention may trigger a
response at a different scale. It may take a long time for the
effects to be noticed, or the effects may occur in a different
system. Therefore, the effects of decisions made at the soft-
ware engineering level (during development or operation of
dynaSoS) might not be seen and understood in time by those
responsible.

Complex failures and unwanted emergent behaviors
Because constituent systems may interact in ways that are
sometimes impossible to foresee, it is difficult for software
engineers to find root causes and handle failures in complex
systems. In his seminal book »The logic of failure« (Dörner,
2003), Dietrich Dörner illustrates that, in order to make decisi-
ons about complex systems, people need the right mindset. In
the domain of software engineering, complexity and emer-
gent phenomena have been acknowledged, and shifts in the
way systems and software are engineered and operated are
already taking place (Jamshidi, et al., 2018). The main point is
that even if novel processes or development approaches are in
place, failure management in complex systems remains a major
challenge (Snafucatchers consortium, 2017). One of the main
problems remaining is how to engineer emergent behavior
that controls unwanted behaviors (such as safety or security
risks) and how to monitor and react to emergent behaviors
before they introduce inacceptable risks.

Causality and causal inference in complex systems
In complex systems, isolating one element to study its behavior
independent of the rest of the system and its interactions with
other components is not effective. This is especially true when
components adapt their behavior to their context. The major
issue is that factors influencing the behavior of components
might not be directly measurable. Assessing causal effects
and finding root causes of problems in software systems is a
long-standing problem, and many techniques and processes
such as immutability, using a staging environment to test
systems in conditions as close as possible to the real ones,
A/B testing, and others have been developed to assess and
improve software quality. In parallel, identifying causes and
assessing causal effects in complex systems is a problem that
research fields such as causal inference and causal discovery
seek to address. These fields provide methods for identifying
and evaluating causal effects even when the underlying data is
not from randomized experiments or when confounding fac-
tors may not be measured. (Glymour, et al., 2019; MacKenzie,
et al., 2018). While some causal inference methods have found
their way into software engineering (Siebert 2022), determin-
ing the root cause of quality in complex software systems
remains a challenging aspect.

27

Research Challenges

Assurance, complexity and emergent phenomena
Coping with complexity and engineering emergent behavior is
already challenging if risks are moderate. In case of high risks,
high confidence is needed that some very critical emergent
phenomena will not occur, or that required behavior will
always occur. This is challenging and probably not feasible with
the traditional assurance approach according to ISO/IEC/IEEE
15026. This approach assumes that we can collect enough
evidences for building a strong argument for the claims to be
assured. It is heavily applied in the context of safety in various
domains and dates back to 1965 (cf. Figure 1 in (Rinehart, et
al., 2017)). It is challenging to apply this approach to dynaSoS
because the evidence that can be collected is generally not
sufficient to build a strong argument. Many evidences can only
be collected during operation. Furthermore, it is challenging to
measure the strength of an argument. This is necessary in the
context of certification because certification authorities and
other stakeholders need to know under which conditions an
argument is strong enough.

Impact of scale and complexity on engineering tasks
Building complex software systems, such as digital ecosystems
like Facebook, Twitter, etc., has forced software engineering
practitioners to find solutions for dealing with complexity at
both technical and organizational levels (Jamshidi, et al., 2018).
A key lesson is that some organizations, such as Spotify (Smite,
et al., 2019), Github (Burton, et al., 2017), or Valve (Möller, et
al., 2021), have adopted a less hierarchical type of structure
to manage complexity. These have been shown theoretically
(Barabási, et al., 2016) to improve information flow and are
thought to be one of the reasons why such organizations are
better at engineering complex software. However, the ques-
tion of how the complexity of the system being built affects
organizations, their processes, and their missions is far from
being resolved (Kuusisto, 2017).

AI-Based autonomy

The AI-based autonomy of constituent systems in a dynaSoS is
challenged by the different types of uncertainty that surround
their runtime operation, be it related to how the autonomy is
engineered or to the environment where they (inter)act. The
usage of AI techniques in safety-critical systems calls for risk
assessment and assurance mechanisms. In addition, as a large
number of contextual elements are expected to be available
in smart scenarios, leveraging opportunities for the design
of context-aware behavior is not trivial. It requires a proper
understanding of the context at the constituent system level
and at the dynaSoS level.

Uncertainty due to autonomous and intelligent
components
Uncertainty is a challenge with several facets in dynaSoS. One
is the nature of the solutions that implement the autonomy of
each constituent system. Autonomous systems that use data-
driven software components can make their decisions based
on an internal representation derived from data. Such systems
have an implicit uncertainty about their functionalities (Kläs, et
al., 2019). This uncertainty can stem from the type of decision
model being used. Indeed, very complex decision models (such
as deep neural networks) can, on the one hand, solve more
complicated problems; on the other hand, they are sensitive
to the problem of adversarial attacks, where a small change
in their inputs can result in a drastic change in the output
decision. The uncertainty can also stem from the data that was
used to develop (or train) the internal decision model. When
the data is not representative of the problem at hand, the
learned decision model might not work well on unseen data
points. Finally, the uncertainty can stem from the application
scope of such systems, especially when the context changes
or the internal goals are changed. An SoS that consists of
multiple autonomous constituent systems must deal with the
propagation of the uncertainty of the individual constituent
systems to the entire SoS.

Uncertainty and changing operational environment
Uncertainty in dynaSoS also stems from the environments into
which the constituent systems are inserted. These environ-
ments are open, which brings uncertainty that can range from
technical issues (e.g., defects in physical devices) to organi-
zational issues (e.g., unexpected demand fluctuations in the
processes these system support), not to mention scenarios
where an actor is trying to disrupt the system behavior on
purpose (e.g., security attacks) (Adedeji, et al., 2020; Tavčar, et
al., 2018). The environment challenges the adaptation capabi-
lities of systems because it is hard to anticipate all adaptation
scenarios at design time (Daun, et al., 2015), which makes not
only the design of adaptation strategies a difficult task, but
also the assurance of adaptation (Schmerl, et al., 2017), which
is required in safety systems.

At the macro level, questions arise from possible unintended
consequences caused by variations in the behavior of the
individual constituent systems – for example, a particular cons-
tituent system that has been modified to improve its resilience
(Uday, et al., 2015) – or even the modification of the current
set of constituent systems in a dynaSoS – e.g., a new compo-
nent joining the system can lead to unpredictable or undesira-
ble behaviors (Tavčar, et al., 2018).

Design of context-aware behavior
The potential for implementing context-aware functionalities
has increased as new and better sources are available. Sensors

28

Research Challenges

are a typical example: They can provide systems with useful
information about the context, including, for example, loca-
tion, weather, presence of an obstacle, distances, temperature,
battery level. Contextual information is not limited to sensor
outputs, though. A widely accepted definition of context
comes from Dey (Dey, 2001): According to him, »[c]ontext is
any information that can be used to characterize the situa-
tion of an entity. An entity is a person, place, or object that is
considered relevant to the interaction between a user and an
application, including the user and applications themselves«.
Put like this, context can potentially be anything. Therefo-
re, contextual information can be obtained not only from
sensors, but also from any source that may provide access to
the situation of entities that are relevant for a usage scenario.
An essential step is to have access to good-quality contextual
data, which is not always the case. In the Internet of Things
(IoT), for example, high-precision indoor positioning is chal-
lenging (Kim, 2018), as is the accumulation of adequate data,
context factor discovery, and filtering of contextual information
(Ahlawat, et al., 2021).

Once systems have access to the context sources, they can
know the context. Then the question is how context can be
used to implement context-aware functionalities, such as
adaptations or recommendations. The design of context-aware
behavior is challenging because in smart scenarios, there are
so many contextual factors available to be taken into conside-
ration, that it is difficult to identify which of them are relevant
for a certain task of interest, or how the individual contextual
factors can be combined to describe a context-aware behavior
(Falcão, et al., 2021).

Automated risk reasoning
A special aspect of context-aware behavior is the consideration
of risks or possible harm scenarios (Feth, 2020). Risk is the
combination of the likelihood of harm and the severity of that
harm. It is challenging to formalize risks and measure them
because of its subjective nature and the need for intersubjec-
tivity in algorithmic decision-making. Automated risk reaso-
ning has to be based on moral standards and raises questions
related to the ethics of risk (Geisslinger, et al., 2021). Many
approaches focus on the risks of a single autonomous system,
like the collision risks of an autonomous vehicle. These approa-
ches are not sufficient for dealing with risks due to emergent
phenomena of dynaSoS.

Macro-level context awareness
While the design of context-aware behaviors aims at the auto-
nomy of the constituent systems, contextual factors can also

arise from the very dynamics of these systems due to emergent
phenomena. This means that certain relevant context sources
cannot always be provided by a single primary context source,
but are rather provided by a combination of contextual factors
from different sources. Strictly speaking, this issue is not limi-
ted to dynaSoS; however, the situation becomes more challen-
ging in dynaSoS because of its openness: Constituent systems
can join and leave without compromising the working of the
dynaSoS, and these systems are heterogeneous. Consequently,
the context sources provided by each constituent system may
not be known in advance by the others. Nevertheless, to fully
exploit the potential of context awareness, constituent systems
should be able to understand the context that can only be
described on the macro level of the dynaSoS. This raises ques-
tions such as who (if anyone) may be responsible for managing
macro-level context in a dynaSoS, and how the macro-level
context may affect the tasks being supported by the dynaSoS
as a whole and by each of its constituent systems.

Assurance of AI and autonomy
Assurance mechanisms are used to check whether a system
satisfies certain qualities of interest, such as safety and cor-
rectness. Constituent systems in a dynaSoS are autonomous
due to the usage of AI and Big Data. These can, among other
things, support the context awareness of these systems and
subsequent self-adaptation. Implementing the assurance of
self-adaptation has been considered an overarching challenge
(Schmerl, et al., 2017), and there have been demands for the
development of runtime assurance mechanisms (Schmerl, et
al., 2017; Tavčar, et al., 2018). The design of runtime assurance
processes for self-adaptive systems has not been sufficiently
investigated though. Furthermore, under the assumption that
we are able to perform runtime assurance, self-adaptation
poses a question about the validity of the assurance cases
when the context changes – in other words, reassurance
must take place at runtime. The question is, which parts of an
assurance case must be re-evaluated when there is a change in
the context – be it the environment or the state of the system
itself.

Heterogeneity and openness

Heterogeneity appears at different levels in dynaSoS. On a
technical level, operational independence implies that the
constituent systems might not rely upon the same techno-
logies. On an organizational level, managerial independence
implies that the organizations themselves might not be inter-
operable (they might use different engineering processes,

29

Research Challenges

have different legal frameworks, and follow different business
strategies). Finding common languages and ways to interope-
rate is part of the digitalization journey, and we already see
interoperability artifacts such as norms, standards, or reference
architectures (like AUTOSAR9, RAMI 4.010, or the Smart Grids
Architecture Model (SGAM)11) that help overcome heteroge-
neity issues. A challenge for dynaSoS is how to transfer this
existing work either to new domains that have not yet had to
deal with heterogeneity issues, or how to build on this existing
work to deal with future heterogeneity issues that will arise
when previously separate domains, organizations, or systems
need to interact.

Openness appears in dynaSoS because the constituent systems
can join and leave a dynaSoS. A dynaSoS has an open door
for constituent systems that support the overall mission of the
dynaSoS. Furthermore, constituent systems communicate with
each other to support the overall mission of the dynaSoS.

Interoperability for shared context awareness
Interoperability is a general challenge in software enginee-
ring that has different facets in different types of systems. In
dynaSoS, one of these facets is how to make contextual data
interoperable and provide constituent systems with shared
context awareness, that is, with a common understanding of
the context of a certain scenario. While constituent systems in
a dynaSoS pursue their own individual goals, they also interact
with each other to achieve the high-level goals of the dyna-
SoS. Such an interaction may take place directly – through the
interfaces these systems expose to each other – or indirectly –
through the ability of these systems to sense and recognize the
other systems and their current state in an interaction scenario.
Context plays a major role in the adaptation capabilities of the
constituent systems, and as constituent systems are developed
and operated independently, their abilities to sense and model
the context into which they are inserted vary as well. As a
consequence, different constituent systems that participate in
a certain smart scenario may have different understandings of
the surrounding context, which in turn may lead to poor or at
least suboptimal collaboration and decision-making, in particu-
lar with respect to the high-level goals of the dynaSoS.

Heterogeneous constituent systems
Constituent systems in a dynaSoS are potentially heteroge-
neous in any technical dimension, including, for example, hard-
ware, software, networks, and protocols (Singh, et al., 2018;
Younan, et al., 2020; Li, et al., 2019). One thing cuts across vir-
tually everything else though: data. Given the technical hetero-
geneity of constituent systems, the continuous exchange and

integration of data with disparate quality are challenging. It is
not trivial to propose, for example, mechanisms that can query
data across different formats and structures (Diène, et al.,
2020). Ideas toward modeling and meta-modeling raise ques-
tions about the adequate level of abstraction of these models
– in order to prevent both oversimplification and overenginee-
ring – and bring with them computational challenges related
to efficiency when we talk about large models (Uday, et al.,
2015). As the details of each system are not or cannot be
known in advance by the other systems, black-box integration
via interface specifications is needed – which, in turn, poses a
challenge for achieving interoperability (Liu, et al., 2020).

Another technical consequence of the heterogeneity of cons-
tituent systems is the problem of monitoring the high-level
behavior of the SoS, which is, for example, observed in the IoT
world due to the velocity, volume, and variety of IoT (Atlam, et
al., 2017).

Impact of security issues
Security is frequently mentioned in the literature as major con-
cern for SoS (Tlili, et al., 2022; Ahmed, et al., 2019; Schranz, et
al., 2021; Goli, et al., 2021; Chen, et al., 2016; Ali, et al., 2021;
Nazish, et al., 2018; Badr, et al., 2021; Li, et al., 2019). There
are different notions of security, so we will first clarify what
we mean by security. The taxonomy of dependable and secure
computing by Laprie (Avizienis, et al., 2004) proposes consi-
dering security as a combination of confidentiality, integrity,
and availability. Furthermore, it introduces the term »malicious
faults« for faults introduced by a human with the malicious
objective of causing harm to the system. We here refer to the
challenge of dealing with malicious faults.

An attacker typically has many opportunities to attack a dyna-
SoS because many constituent systems can join a dynaSoS,
and each of them can be subject to an attack. The constituent
systems often communicate by exchanging information and
their software is continuously being updated. These and other
aspects lead to many opportunities for attacking a single
constituent system. Dealing with all these possible attacks is
challenging. Many attacks might be seen as not so severe from
the local perspective of an operator of a constituent system,
but they may have a severe impact from the global dynaSoS
perspective, possibly generating emergent phenomena leading
to severe losses. If the severity is really high, then we consider
it as a safety issue. This means that we do not limit safety to
loss of life, injury to humans, damage to property, etc.

9 https://www.autosar.org/

10 https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/rami40-an-introduction.html

11 https://energy.ec.europa.eu/smart-grid-reference-architecture_en

https://www.autosar.org/
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/rami40-an-introduction.html
https://energy.ec.europa.eu/smart-grid-reference-architecture_en

30

Research Challenges

Interoperability and integrity of exchanged information
In a dynaSoS, the constituent systems typically collaborate by
exchanging information. This information is often truthful, that
is, it may either be true or not. For instance, the information
that the speed of a vehicle is not higher than a certain value X
is truthful. If the information is used for making critical deci-
sions, then high confidence is needed that the information is
actually true. The level of required confidence depends on the
criticality of the decision. This means that the senders of infor-
mation have to somehow communicate the level of confidence
so that the receivers can take this into account when making
decisions or when deriving other pieces of information and
related confidence information. Engineers also have to deal
with this issue when they design a system where one compo-
nent sends critical information to another component. The dif-
ference is that the components are known, and the engineers
can reason on whether the required level of confidence is
provided or in which situations it is provided. In the safety-criti-
cal domain, this communication is supported by the concept of
integrity levels. This is why we refer to the integrity of exchan-
ged information and not to confidence. There are domain-spe-
cific versions of integrity levels, like ASIL for automotive and
AgPLr for agricultural machinery. This leads to interoperability
challenges when components from different domains are put
together. The IEEE P285112»Standard for functional safety data
format for interoperability within the dependability lifecycle« is
working on this issue. This is also an issue for horizontal dyna-
SoS, but the main issues are that the engineers of a constitu-
ent system do not know how the information provided is used
and that the usage defines which assumptions for generating
the information are relevant for the receiver.

Distributed systems

Research on distributed systems or distributed computing
deals with issues such as the tradeoff between running time
and number of required computers, synchronization, byzan-
tine errors, consensus problems, self-stabilization, or dead-
locks. Distributed computing is also used in some constituent
systems, even though a single computer would be possible,
because it can be faster, more reliable, and/or more cost-effi-
cient. Considering a dynaSoS and the geographic distribution
of its constituent systems, distributed computing is essen-
tial for using the flexibility to execute software on available
hardware resources. This flexibility can be used to minimize
the required hardware resources, energy consumption, error
handling, and many other criteria. Real-time constraints limit
this flexibility, but 5G and other technologies push these
limits. Safety is also a limiting factor because it is hard to per-
form all necessary safety analyses and provide related safety

guarantees if the execution of software is not straightforward
but highly dynamic and optimized according to many criteria.

Assured dynamic software execution in distributed
systems
Safety standards for single systems such as road vehicles or
agricultural machinery provide guidance for dealing with
failures of execution platforms for application software. The
safety requirements for the execution platform depend on the
criticality of the application software. Moreover, it needs to
be assured that application software of lower criticality does
not affect application software of higher criticality via shared
resources for their execution. Fulfilling such requirements is
challenging if approaches are applied that are common in
distributed computing and cloud computing. For instance, con-
tainerization enables the deployment of multiple applications
using the same operating system on a single virtual machine
or server. If the applications have different levels of criticality,
then it is challenging to assure freedom from interference
requirements. On the other hand, these approaches enable the
implementation of dynamic safety mechanisms. For instan-
ce, containerization can be used to run several copies of a
safety-critical application and implement fault tolerance based
on voting strategies. The number of replicas can be changed
at runtime depending on the current criticality of the applica-
tion. This is a promising approach, but common cause failures
need to be considered. The general research questions are as
follows: Which conventional safety measures can be applied
in the context of distributed computing and cloud computing?
Which additional safety measures can be applied? How to
demonstrate that all applied safety measures are at least equal-
ly effective as the conventional ones?

Continuous and innovation-driven development

Continuous and innovation-driven development is common
in cloud-native and digital organizations (Ebert, et al., 2022).
These approaches have been shown to improve the speed
and quality of software systems. However, they are not silver
bullets that can be applied overnight (Fitzgerald, et al., 2017;
Ebert, et al., 2022). They are not common for safety-critical
software embedded in vehicles or other physical products
(Fayollas, et al., 2020). In that case, the market introduction
of a product and changes after market introduction play
an important role in terms of safety and liability. Laws and
regulations define health and safety requirements that must
be fulfilled prior to market introduction. The producer‘s liability
obligation is excluded if the state of scientific and technical
knowledge at the time the producer puts the product into cir-
culation was not such as to enable the defect to be discovered

12 https://sagroups.ieee.org/2851/

https://sagroups.ieee.org/2851/

31

Research Challenges

(Bundesgesetzblatt, 1989). This may become problematic if
the behavior of constituent systems is very situation-specific
and the environment evolves. For instance, imagine that it was
not reasonably foreseeable that people would wear masks
when an autonomous system was put into circulation. This
may affect the system behavior so that it becomes unsafe.
Consequently, the behavior has to evolve with its environment.
Continuous development of safety-critical products has this
additional motivation but is particularly challenging because it
is in conflict with established regulatory and certification fra-
meworks. Besides, the independent development lifecycles of
constituent systems pose another challenge for the evolution
of these systems.

Certification and continuous improvement
Certification is well established for assuring critical properties
such as safety. Regulations and safety standards define safety
requirements. Product manufacturers implement these safety
requirements and certification authorities check their fulfill-
ment. If we consider dynaSoS, then several questions arise:
Do we consider each technical system in the dynaSoS as a
product, all technical systems together, or the complete dyna-
SoS including all non-technical elements? How to deal with the
changing constituent systems that belong to a dynaSoS? How
to deal with the evolution of non-technical systems? How to
deal with the continuous improvement of technical systems?
Only the last question is directly related to continuous enginee-
ring, but a holistic solution is required that answers all these
questions together. This solution should support modularity
so that manufacturers of technical systems can certify their
system without knowing all possible dynaSoS to which their
system may contribute in the future. Furthermore, this solution
should support composability so that a certificate for the
dynaSoS can be derived from the modular certificates. Certi-
fication authorities should be able to assess this mechanism
for composition. Such visions are known as runtime certifica-
tion (Rushby, 2008), conditional safety certificates (Schneider,
2014), or dynamic risk management (Schneider, et al., 2018).
One challenge that makes it hard to realize them is how to
align them with a regulatory framework or adapt the regulato-
ry framework. For instance, the European Machinery Directive
defines that machinery can mean assemblies of machinery.
This makes it possible to consider a fleet of robots as one
product that can be certified. Further investigation is required
to identify the limits for interpreting the generic definition of
machinery. Can a complete factory or even several factories be
considered as machinery? How flexible is the definition with
respect to changing numbers and types of machinery? What
changes with the new machinery regulation? Other challen-
ges relate to the technical implementation. So far, there are
generic concepts and related implementations. How to tailor
them to a particular domain for a small dynaSoS that is built
from scratch? How to introduce this concept incrementally into
existing systems of systems?

Response time addressing asynchrony of continuous
developments
One of the challenges of continuous development in dynaSoS
is managing the development and integration of multiple com-
ponents with different lifecycles and development speeds. For
example, different subsystems may be developed by different
teams, and changes in one subsystem may affect the others.
As systems continue to evolve, new requirements and changes
may be introduced at different times, leading to asynchrony in
the development process (Bauer, et al., 2019; Theobald, et al.,
2018). This can result in significant delays and inefficiencies,
especially in safety-critical systems where a delay in response
time can have severe consequences.

One significant challenge is ensuring that the development
teams responsible for different components of the system can
work together effectively. Collaboration is critical to ensure
that changes are integrated smoothly and that there are no
conflicts between different components. This requires a clear
understanding of the system‘s architecture and an effective
communication strategy that enables teams to work together
seamlessly (Tisi, et al., 2021; McDermott, et al., 2020).

Another challenge is ensuring that changes to the system do
not compromise its safety or performance. Asynchrony in
development can lead to unforeseen consequences, and chan-
ges to one component can affect the behavior of the entire
system. Therefore, it is essential to have an effective change
management strategy that enables changes to be integrated
into the system while ensuring that safety and performance
are not compromised.

Engineering

These challenges are mostly related to the dimension »Engi-
neering«”, but the changes are rooted in the evolution toward
larger-scale and more complex interconnected systems (i.e.,
horizontal, global dynaSoS).

 Digitalization and the digital economy are leading to a
number of organizational and business changes. The way
products are developed, sold, and used today is different
from what was possible before the digital transformation. For
instance, new versions of a software product can be shipped
into production several time a day, or randomized experiments
(so-called A/B testing) can be run in order to determine what
features are most desirable or profitable.

In terms of culture and organization, companies that are at
the forefront of digitalization are facing novel challenges, and
they are proposing novel solutions, such as “T-shaped” profi-
les13, cross-functional teams, lightweight and agile processes,
flat hierarchies, everything as a service, etc. Many have also

32

Research Challenges

published handbooks promoting their values, vision, and cul-
ture14. Their experience (good or bad) is going to be evaluated
and adapted by other domains as they advance on the path of
digitalization.

Furthermore, the current Covid-19 crisis has forced many orga-
nizations to switch to remote work and make use of digital
platforms. Although we can only see the very first effects of
such crises on the state of digitalization (see, for example,
a case study from Chemnitz University (Skulmowski, et al.,
2020)), it is believed to have accelerated digitalization and
will have an impact on the way people work and what users
expect in terms of digital services (LaBerge, et al., 2020).

Shifts in culture, mindset, and organization appear to co-evol-
ve with societal trends and regulations. The climate change
crisis and related political engagement are pushing organiza-
tions to move toward a more circular economy and to take
rebound effects into account (Sundberg, 2022).

For example, open source and open data are already an integ-
ral part of sustainable circular design15 as both ease the reuse
of digital assets such as software, data, or designs. However, it
is less clear how the measures that will be adopted by orga-
nizations in response to the climate change crisis will in turn
affect software engineering.

Shortage of skilled workers, continuous education and
the need for automation and low-code solutions
In the interviews with systems and software engineering
experts as well as in the interviews with domain experts
(see, for example, the results of our interviews for Smart City
(Brandt, et al., 2022)), both groups pointed out that skills shor-
tage is a major challenge when it comes to pushing toward
larger and more complex software systems such as dynaSoS.
This problem also occurs in many other domains (Strietska-Ili-
na, 2008; Brunello, et al., 2019; George, et al., 2019; Amade,
et al., 2021) and has been shown to be pronounced for activi-
ties related to digitalization (including IT, software engineering,
and data science) (Janssen, 2022).

The Future of Jobs Report 2020 from the World Economic
Forum (Zahidi, et al., 2020) estimates that half of all employees
worldwide would need reskilling by 2025. The technological
trends such as AI, Big Data, Data Science, or IoT, are seen as
disruptive and will lead to radical changes, not only in the
way we work, but also in the skills required (Li, 2022). Mitiga-
ting the risks related to skills shortage is a complex task, and
several ways are being and will be explored to address this
problem. For example, continuing education (and the integra-
tion of continuing education into the corporate culture) is one
relevant aspect, increased automation and the application of
low-code16 applications is another one17.

Transdisciplinary approach, fairness, diversity and
inclusion
Not only are systems becoming more complex and their impact
broader (see, for example, issues raised by automated deci-
sion-making (Zweig, 2019)), but requirements for the accoun-
tability of software engineers are increasing proportionally to
the societal impact of the software being developed. Thus,
many tech industries are investing in diversity and inclusion
programs18, partly to ensure talent acquisition and retention
but also because diversity and inclusion have been shown to
improve productivity and software quality (Rodríguez-Pérez, et
al., 2021). A transdisciplinary approach is already at the heart
of research into complex systems and is also recognized by
researchers in software engineering (Méndez Fernández, et
al., 2019). However, in practice, very little is known about this
topic.

Heterogeneous organizations
Constituent systems in a dynaSoS are designed, managed,
and operated independent of each other, notwithstanding the
fact that the organizations behind them should collaborate in
order to foster synergies and optimize the fulfillment of the
overarching goals of the dynaSoS. Achieving such synergy is
challenging though. Different organizations may use different
processes, techniques, and tools to develop and maintain their
constituent systems (Liu, et al., 2020). Whenever coordination
is required, issues are expected to emerge from conflicts bet-
ween the particular goals pursued by each party (which may

13 T-shaped persons are people who are capable of being a specialist in one domain, but have enough generalist knowledge to enable them to collaborate with
other experts across disciplines (Johnston, 1978). See also https://www.incose-cc.org/blog/the-t-shaped-engineer

14 Several examples are discussed by practitioners; for one example among many, see: https://techbeacon.com/app-dev-testing/
lessons-7-highly-successful-software-engineering-cultures

15 See https://opencircularity.info or https://oscedays.org/

16 Low-code (sometimes called no-code) is a software development approach that aims at minimizing the amount of coding by using a collection of ready-to-go
UI components, boilerplate scripts, or visual workflow automation tools (such as the data analytics platform KNIME https://www.knime.com/blog/low-code-
data-science-is-the-future or Google blockly https://developers.google.com/blockly).

17 https://www.gartner.com/en/newsroom/press-releases/2022-12-13-gartner-forecasts-worldwide-low-code-development-technologies-market-to-grow-20-per-
cent-in-2023

18 https://corporate.zalando.com/de/dobetter-diversitaets-inklusionsbericht-2022

https://www.incose-cc.org/blog/the-t-shaped-engineer
https://techbeacon.com/app-dev-testing/lessons-7-highly-successful-software-engineering-cultures
https://techbeacon.com/app-dev-testing/lessons-7-highly-successful-software-engineering-cultures
https://opencircularity.info
https://oscedays.org/
https://www.knime.com/blog/low-code-data-science-is-the-future
https://www.knime.com/blog/low-code-data-science-is-the-future
https://developers.google.com/blockly
https://www.gartner.com/en/newsroom/press-releases/2022-12-13-gartner-forecasts-worldwide-low-code-development-technologies-market-to-grow-20-percent-in-2023
https://www.gartner.com/en/newsroom/press-releases/2022-12-13-gartner-forecasts-worldwide-low-code-development-technologies-market-to-grow-20-percent-in-2023
https://corporate.zalando.com/de/dobetter-diversitaets-inklusionsbericht-2022

33

Research Challenges

be reflected, for example, in how they prioritize their activities
and which technology they use) and the overarching goals of
the dynaSoS. In addition to that, the organizational heteroge-
neity is technically reflected in the different data formats and
standards as well as the quality adopted and required by each
system. From an organizational point of view, the question is
how strategies to improve the overall SoS can be implemented
when the distribution of costs and benefits among participants
is not clear (Uday, et al., 2015).

Data acquisition, exchange, and interoperability
Different data sources may provide information about the
same semantic concepts, but in different formats and reso-
lutions (a simple example would be temperature in °C/day
versus temperature in °F/week). It is also possible that the data
sources provide their information in different modalities (e.g.,
text, images, videos, audio, …). Merging different data sources
is known as data fusion (Bleiholder, et al., 2009). Recent
advances in deep learning have improved multimodal data
fusion techniques, but this research and its applications are still
in a preliminary stage (Gao, et al., 2020).

Data-driven decision systems, such as ML-based systems,
almost always require some form of data pre-processing that
is context- and application-dependent. Part of this pre-pro-
cessing is called feature engineering. A typical example from
natural language processing would be the conversion of words
into vectors using methods such as Word2Vec. These vectors
(called features) can be used to compute the similarity bet-
ween pieces of text. The challenge here is that the features
created depend on the goal of the system that created them
and on the data used to create them. Tools such as feature
stores and pre-trained models are already being used in practi-
ce, but very little is known about the usability of these features
in other contexts. Furthermore, there are also privacy issues,
and it is not yet fully understood to what extent protected
attributes can be reconstructed using features developed by
another constituent system.

Data quality, lifecycle management and data
governance
Challenges related to data-intensive systems include aspects
of data protection, data usage control, and data sovereignty:
who has what kind of data, who has access for what purpose,
and how is the data being used and exploited? The issue about
who owns the data that is collected and exchanged has not be
solved, and there is a legal vacuum about the topic (Singh, et
al., 2018). Beyond the legal implications, there are also ethical

concerns, especially when personal data is involved. These
need to be tackled by the different organizations taking parts
in the dynaSoS and require the definition of a data governance
strategy on the dynaSoS level and the alignment of strategies
and processes in place.

Another key challenge related to data-intensive systems is data
quality. Data preparation is claimed to consume much of the
time19 of any data-driven project. Data quality is a broad topic,
and several standards have been devised to define it (e.g., ISO
8000, ISO/IEC 25012, or ISO/IEC 5259). There are basically two
main sources of problems that can cause poor data quality.
The first one is related to the way data is acquired, transfor-
med, and stored. For example, the resolution of the initial
measurements might be insufficient, raw data might be aggre-
gated and transformed losing some information on the way,
and storage capacity may impose limitations on how much
data can be kept and how good its resolution can be. This
first set of challenges is common to every software system,
whether data-intensive or not, but increases with the scale and
complexity of the software system.

The second aspect relates to the intended use of the data and
is particularly relevant to data-driven decision systems. Data
captures only part of reality. This means that some relevant
information may be missing. More importantly, a part of reality
that is irrelevant to the problem at hand may be captured by
the data. Some of the latest AI applications have recently been
accused of not being fair and of perpetuating stereotypes. One
example is the Word2Vec method (cited above), which trans-
forms words into vectors. When trained on available data from
news articles, it has been shown to reproduce gender stereoty-
pes (Bolukbasi, et al., 2016). Research on algorithmic fairness,
accountability, and transparency has grown in recent years20,
providing initial tools to avoid this kind of undesirable behavior
in data-driven systems and also helping to identify and address
related data quality issues, which have in turn been implemen-
ted in major cloud providers21. However, these problems are far
from being solved and will be relevant for dynaSoS.

Summary

We organized 24 research challenges for dynaSoS into eight
clusters based on the research architecture. In the next
chapter, we will detail the six research recommendations we
derived from these challenges.

19 Here, the numbers vary between 50% and 80% depending on the sources.

20 See, for example, work done and published at these conferences https://facctconference.org/

21 See, for instance, https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-fairness-and-explainability.html or https://learn.microsoft.com/en-us/azure/
machine-learning/concept-fairness-ml

https://facctconference.org/
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-fairness-and-explainability.html
https://learn.microsoft.com/en-us/azure/machine-learning/concept-fairness-ml
https://learn.microsoft.com/en-us/azure/machine-learning/concept-fairness-ml

Boot fährt im Kreis und erzeugt Wirbel

34

35

Recommendations, research directions and roadmap

Recommendation: Value-based engineering of
dynaSoS

Economic rules and regulatory constraints define which atomic
dynaSoS will be developed from scratch and how existing SoS
will be transformed into dynaSoS. They have to comply with
the values of the affected societies or individuals and establish
the right incentives for a reasonable change. Even if this open
issue seems more related to sustainability science, ethics, and
regulatory science than to computer science, systems and
software engineers are increasingly confronted with deep
societal and environmental questions (Zweig, 2019; O‘Neil,
2016; Sundberg, 2022) and software engineering has a role
to play in this regard. Although ethics and sustainability have
long been part of the engineering curriculum, they are still
optional courses and training is insufficient for practitioners
(Casañ, et al., 2020; Seyff, et al., 2020). The standard series
IEEE 7000 already addresses this issue, but there is a lack of
concrete methods and tools for implementing its requirements.
In particular, methods and tools that allow us to investigate
the potential sustainability effects of software systems are
still in their infancy. Accordingly, we recommend accelera-
ting research and the development of applications at the

intersection of systems and software engineering, ethics, and
sustainability.

Motivating challenges

1. Environmental and social impact: The growing trends
of connected objects, cloud computing, and ever-growing
digitalization open up many opportunities for collecting
relevant information for shaping the digital transformation
of SoS and for engineering dynaSoS for a better world. It is
necessary to understand and control their impact on ecolo-
gical systems, societies, and individuals. Software enginee-
ring plays a key role not only in implementing the digital
transformation but also in finding and assessing reasonable
directions.

2. Transdisciplinary approaches, fairness, diversity, and
inclusion: Regarding the technical part, software engi-
neering is increasingly dealing with how people organize
themselves in order to solve (complex) problems in an
interdisciplinary manner. Systems thinking, critical and pre-
cise thinking, and T-shaped engineers22 are thus becoming
increasingly important.

Recommendations, research
directions and roadmap

In this chapter, we detail our six research recommendations for dynaSoS.
Each recommendation is related to some of the research challenges introdu-
ced above. The recommendations are followed by potential research directi-
ons to be pursued. In total, we indicate 19 research directions and position
them in a roadmap.

22 https://www.incose-cc.org/blog/the-t-shaped-engineer

https://www.incose-cc.org/blog/the-t-shaped-engineer

36

Recommendations, research directions and roadmap

Research directions

The following research directions are envisioned to address this
recommendation:

Digital ecosystem shaping and requirements enginee-
ring for sustainable dynaSoS
As already stated above, software engineering plays a key
role in understanding how to evolve SoS toward a sustaina-
ble world. In particular, requirements engineering is essential
in this regard but still in its infancy when it comes to large
heterogenous groups of stakeholders with conflicting inter-
ests. We recommend increasing efforts regarding the research,
education, and development of approaches dealing with this
issue. A promising research direction in this regard is given by
digital ecosystem shaping. Digital ecosystem shaping helps
to understand possible value streams and shape the business
models of the organizations involved and related use cases of
technical systems. A recommended future research direction is
to enhance this approach with respect to damage streams and
impact on ecological and social systems.

Ethics of decision-making processes in dynaSoS
Digital ecosystem shaping abstracts from the concrete behavi-
or of technical systems and their decision.making. Algorithmic
decision-making systems (Hauer, et al., 2021; Castelluccia,
et al., 2019) (such as credit scoring, news filter and ranking

algorithms, etc.) have brought many ethical questions to
the public space and have triggered novel research involving
ethics, regulatory science, and software-related science inclu-
ding AI. Even though many novel results have been achieved,
the challenges brought by dynaSoS concerning this topic are
far from being solved. The ongoing work will foreseeably
continue in the near future and requires further support to
address dynaSoS due to complex interdependencies between
the decision-making processes of different technical systems
and humans.

Critical precise systems thinking and virtual engineering
Understanding and engineering complex decision-making pro-
cesses is hardly possible without simulating them in a virtual
world. In the context of virtual engineering, many methodo-
logies and tools have been developed, but applying them in
the context of dynaSoS requires many systems engineering
skills, such as critical and precise systems thinking (Arnold, et
al., 2015). It is essential to understand dynaSoS as a whole and
to reflect on possible evolutions. Critical and precise thinking
is essential for avoiding fallacies in reasoning, including those
related to ethics such as the naturalistic fallacy. The problems
engineers are facing in terms of the sustainability of current
SoS today cannot be solved at the same level of thinking they
applied when they created them.

Figure 13. Clustering of challenges for value-based engineering of dynaSoS and related research directions

37

Recommendations, research directions and roadmap

Recommendation: Engineering of emergence and
resilience

DynaSoS are intrinsically complex, and their behaviors depend
on complex non-linear interactions at multiple scales. Enginee-
ring such complex systems requires an appropriate mindset
and suitable methods and tools. The most recent advances in
complexity and complex network sciences usually find their
application in software engineering. For example, unders-
tanding how information flows in complex networks such as
small worlds has led some companies to change their organi-
zations to flatter structures in order to improve communica-
tion and value flows (see, for example, the keynote by James
Lewis about complexity and teams topologies23). However, it
is very unclear how ideas from complexity science percolate
into software engineering. Apart from different languages,
the challenge is that complexity science studies emergent
phenomena through the lens of models describing complex
systems as a whole, taking a macro-level view of the problem.
Software engineering, on the other hand, is concerned with
the design of components that are part of complex systems,
and has to deal with situations where the overall view of the
whole is only partially available. Our recommendation is to

continue supporting transdisciplinary projects in order to trans-
fer methods from basic research on complex systems (such as
non-linear physics, network science, or social sciences) to the
field of software engineering.

Motivating challenges

The main motivating challenges for this recommendation come
from the fact that dynaSoS are complex systems: They are by
definition composed of many, potentially heterogeneous inter-
acting systems, each developed by a different organization.

1. Complex failures and unwanted emergent phenome-
na: The behavior of dynaSoS is governed by intricate inter-
actions that take place at different scales. Therefore, it is
almost impossible to anticipate all the interactions between
all the parts, and complex failures will inevitably happen.

2. Causality and causal inference in complex systems: A
related challenge concerns the discovery, understanding,
and analysis of causal effects in complex systems, where
causal effects have different time scales and might be
highly non-linear.

Figure 14. Clustering of challenges for engineering emergence and resilience, and related research directions.

23 https://www.youtube.com/watch?v=_mYlSMepTGw

https://www.youtube.com/watch?v=_mYlSMepTGw

38

Recommendations, research directions and roadmap

3. Transdisciplinary approaches, fairness, diversity, and
inclusion: It is unclear how state-of-the-art techniques
from complex systems sciences can infuse software engi-
neering practice.

4. Uncertain and changing operational environment:
Furthermore, dynaSoS are operating in open and dynamic
environments, which makes it harder to anticipate all opera-
ting conditions.

5. Resilience and potentially unknown impacts: Finally,
dynaSoS are large-scale systems, whose impact on their
environment (be it societal or environmental) and feedback
from their environment are largely unknown and difficult to
assess.

Research directions

The following research directions are envisioned to address this
recommendation:

Applicability and transfer of complexity sciences met-
hods to software engineering
Dealing with large-scale complex systems is not a problem
faced by software engineering alone. Indeed, over the years,
other research domains have developed methods and tools
to model, understand, and control emergent phenomena.
Complexity sciences encompass fields of science such as net-
work science, sociophysics, or econophysics24. Many different
methods and tools have been developed, such as network
analysis (including novel deep learning approaches for graphs),
synergetics and non-linear dynamics, or agent-based modeling
and simulations. However, very few of these techniques have
found broad application in software engineering practice (see,
for instance, (Mascardi, et al., 2019) or (Snafucatchers consor-
tium, 2017)) and are not part of the classical software enginee-
ring curriculum yet.

One research direction to pursue is to understand where
the bottleneck between complexity sciences and software
engineering practice comes from and to develop methods,
curricula, and interdisciplinary projects to assess the potential
and impact of complexity sciences on software engineering
practice.

Understanding causality in complex software systems
The intricate networks of interactions in complex systems and
the increased involvement of cyber-physical systems make it

difficult to perform randomized experiments (see, for exam-
ple, (Mattos, et al., 2022) in the automotive domain) and
increasingly requires reliance on observational data to unders-
tand causality and on the application of the relatively new
techniques from statistical causal inference (Siebert, 2022).
Classical statistical analysis (including machine learning) have
been applied in software engineering for a long time. Howe-
ver, these have a major drawback, as they cannot distinguish
between causal effect and spurious correlations. The data
science, machine learning, and AI communities have recently
recognized that these limitations undermine the properties of
the developed systems such as fairness and explainability but
also reliability and sustainability (Pearl, 2019; Schölkopf, 2019).
Work is under way in the Data Science community (from both
the academic25 and the industry side26). One of the research
directions to follow is to promote a shift in practice from
correlational analysis to more causal inference methods as
well as to promote the transfer of basic research (such as that
Department of Empirical Inference of the Max Planck Institute
for Intelligent Systems, see https://ei.is.mpg.de/) to applied
research and software engineering practice.

Toward tools for automated monitoring, modeling, and
simulation of large dynaSoS
The previously mentioned research directions focus more on
changing the culture and the methods. It is clear that these
changes will not be effective if the right tools are not develo-
ped in parallel. First, in order to observe emergent phenome-
na, it is necessary to monitor the system at different scales and
to be able to link these observations to each other in order
to understand how an event in a given component at a given
time might impact the entire system later (Schlossnagle, 2017).
Large complex software systems, even if properly monitored,
are often not able to observe emergent phenomena simply
because it is difficult to link events that are often observed at
different scales by different systems or organizations. Second,
modeling complex software systems requires coupling diffe-
rent models and simulation tools (Siebert, et al., 2010). In this
case, co-simulation methods can help to reuse existing models
and simulation software (Paris, et al., 2019). However, mode-
ling and analyzing emergent phenomena still requires a level of
expertise not mastered by all software engineering practitio-
ners. One research direction to follow is to improve the ease of
analyzing and modeling complex systems in order to unders-
tand and control emergent phenomena. A starting point could
be the development of semi-automated monitoring and/or
modeling tools for large complex software systems.

24 See an overview at https://www.art-sciencefactory.com/complexity-map_feb09.html

25 CauSES – Approaches to causation in the social and natural sciences and their implications for theory building in sustainability science https://causes.seslink.org/

26 See for instance https://www.causalscience.org/meeting/programme/programme-2022/ or https://fairness.causalai.net/

https://ei.is.mpg.de/
https://www.art-sciencefactory.com/complexity-map_feb09.html
https://causes.seslink.org/
https://www.causalscience.org/meeting/programme/programme-2022/
https://fairness.causalai.net/

39

Recommendations, research directions and roadmap

Recommendation: Engineering of safe and highly
trustworthy dynaSoS

On the one hand, the digital transformation of existing SoS
into dynaSoS is indispensable to address ecological risks such
as climate change. On the other hand, it introduces complexity
and other properties that are in conflict with famous princip-
les for avoiding and mitigating risks, such as »Keep it simple,
stupid!« (KISS principle). Safety research already provides some
approaches for dealing with this conflict. We recommend
supporting the further development of these approaches, their
integration, and their application with respect to other trust-
worthiness aspects. This is particularly relevant for small atomic
dynaSoS. To address larger and holistic dynaSoS, we recom-
mend enhancing the scope of safety research and integrating
it with research from sustainability and complexity science.

Motivating challenges

1. Automated risk reasoning: Automated reasoning about
trustworthiness is needed for two reasons. Technical
systems in a dynaSoS make decisions that have an impact
on safety and other trustworthiness aspects. Accordingly,
algorithmic decision-making has to take different kinds of
risks into account. This is challenging because it is hard to
formalize risks and related risk reasoning.

2. Interoperability and integrity of the exchanged infor-
mation: In a dynaSoS, the constituent systems typically
collaborate to control risks. They exchange information that
is relevant for estimating, assessing, and controlling risks.
The level of confidence in the correctness of information
may vary strongly for various reasons. In order to take this
into account, approaches are required to model and analyze
the integrity of information.

3. Impact of security issues: Constituent systems in a dyna-
SoS have to be open in order to collaborate. This leads to a
large attack surface. Furthermore, complex interdependen-
cies between malicious faults and other kinds of faults may
exist because the constituent systems interact with each
other in a complex way. Incorrect behavior of constituent
systems may lead to emergent phenomena that have an
impact on safety, availability, reliability, and other trustwort-
hiness aspects.

4. Certification and continuous improvement: The evo-
lution of a dynaSoS or its operating context can introduce
new risks or increase existing ones. For this reason, dynaSoS
have to be improved continuously, but current safety regu-
lations and certification are limited to non-evolving systems
with a clearly defined usage context. In many cases, tradi-
tional re-certification would unacceptably slow down the
required evolution a dynaSoS.

5. Assured dynamic software execution in distribu-
ted systems: In a dynaSoS, the execution of application

Figure 15. Clustering of challenges for engineering safe and highly trustworthy dynaSoS and related research directions.

40

Recommendations, research directions and roadmap

software is often dynamic. The software is dynamically
allocated to the execution platforms of its constituent sys-
tems and is dynamically scheduled after this allocation. This
dynamism increases efficiency but makes it hard to provide
good assurances. Optimization of the average case leads
to large worst-case execution times. The failure rates of an
application due to random hardware failures can hardly be
determined. Thus, this dynamism is limited to non-critical
applications. The transformation of SoS into dynaSoS often
requires critical applications to also be executed dynamically
(Adler, et al., 2022).

6. Assurance of AI and autonomy: The transformation of
SoS into dynaSoS is based on Big Data and AI, which intro-
duces autonomy of the constituent systems. On the one
hand, related technical means and properties open up new
opportunities for dealing with risks. On the other hand,
they make it challenging to assure that the intended risk
reduction is actually achieved by these means.

7. Assurance, complexity, and emergent phenomena:
Coping with complexity and engineering emergent behavior
is already challenging if the risks are not so high. In the case
of high risks, high confidence is needed that some very
critical emergent phenomena will not occur or that required
emergent behavior will always occur.

Research directions

The following research directions are envisioned to address this
recommendation:

Further development and integration of safety research
for dynaSoS
Safety research already provides some approaches for dealing
with these challenges. We recommend supporting the further
development of these approaches, their integration, and their
application with respect to other trustworthiness aspects.

Automated reasoning (cf. motivating challenge 1) about
trustworthiness aspects is supported by the research around
dynamic risk management (Feth, 2020). This includes the
implementation of a »runtime risk manager«, as it is called in
VDE-AR-E 2842-61. As illustrated in the right part of Figure 16,
dynamic risk management can happen at different scopes.
Standards such as ISO 21815 focus on machinery and collision
risks. The application rule VDE-AR-E 2842-61 already consi-
ders shared perception and cooperative risk management in
small atomic dynaSoS. We propose considering dynamic risk
management also in larger vertical or horizontal dynaSoS.

Enlarging the scope of risk reasoning and the transformation
of SoS into dynaSoS requires critical applications to also be
executed dynamically (cf. motivating challenge 5). As illustrated
in Figure 17, virtualization allows abstracting from the exe-
cution platform. This abstraction supports resource-efficient
execution of applications but is challenging from an assurance
perspective because dynamism complicates common cause
failures analysis and other safety analyses. Some solutions have
been proposed (Adler, et al., 2022), but further research is
needed to bridge the gap from abstract concepts to concrete
solutions. The objective of this research is for the platform to
use different kinds and amounts of resources depending on
the required level of safety integrity. As illustrated in Figure 17,

27 https://www.iese.fraunhofer.de/blog/zertifizierung-4-0/

28 https://www.din.de/de/ueber-normen-und-standards/smart-standards

Figure 16. Extending the scope of dynamic risk management and automated risk reasoning.

https://www.iese.fraunhofer.de/blog/zertifizierung-4-0/
https://www.art-sciencefactory.com/complexity-map_feb09.html
https://www.din.de/de/ueber-normen-und-standards/smart-standards

41

Recommendations, research directions and roadmap

such a solution can be combined with risk reasoning on the
application level. If the application identifies a change of risk
in the current situation, the virtualization layer can adapt the
mapping to the required resources.

A modular approach is required to flexibly combine the inter-
action among different applications, among different plat-
forms, and among applications and platforms. Furthermore,
the complete set of causes and effects need to be considered
together. Causes should include conventional software and
hardware faults but also malicious faults and faults of data-dri-
ven models. Effects should include the classical combination of
reliability, availability, maintainability, and safety (RAMS), but
also other trustworthiness aspects such as fairness. An exam-
ple of a modular approach are (Executable) Digital Dependabi-
lity Identities (Koorosh, et al., 2022). In order to deal with the
evolution of dynaSoS and enable continuous trustworthiness
engineering, this approach can be combined with the concept
of DevOps. An example is SafeOps (Fayollas, et al., 2020).

These approaches need to be combined with solutions for
handling the risks of autonomous constituent systems and
related AI-based perception. This includes, for instance,
solutions for measuring and handling uncertainty (Groß, et al.,
2022). Furthermore, this includes assurance cases for AI and
autonomous systems such as SACE, AMLAS from the Assuring
Autonomy International Programme, or work to measure the
strength of assurance arguments (Bloomfield, et al., 2022).

All this research toward certification 4.027 goes hand in
hand with the digital transformation of the testing-inspec-
tion-certification (TIC) industry. The TIC industry pushes the
digitalization of standards in order to automate TIC processes.

Related standards are also referred to as »smart« standards28
– standards that are machine-applicable-readable-transferra-
ble. Smart standards need to become part of digital twins and
DevOps for trustworthiness.

Combining safety research for dynaSoS with sustainabi-
lity research and complexity science
The safety research mentioned above focuses on technical
aspects and relatively small dynaSoS. In order to support the
necessary transformation of existing SoS into dynaSoS, a
larger engineering scope is needed because of the complex
interdependencies between different SoS. In 2019, the inter-
national collaboration community Engineering X launched a
Safer Complex Systems initiative to address the issue of system
interdependencies and related chain reactions if one system
collapses. In this case, safety science already considers a very
large geographic scope, but the scope is limited to the safety
of the current population. In contrast to that, sustainability
also takes into account the safety of future generations. In this
regard, sustainability enhances safety. Accordingly, it makes
sense to investigate whether the engineering approach for
safety can be extended to include sustainability. Some initiati-
ves and proposals already hint at this idea, such as the working
group »Safety of the Environment« of the Safety-Critical Sys-
tems Club29 or the paper »Global warming and system safety«
(Jones, 2022). While this a reasonable research direction from
a safety perspective, the primary challenge belongs to the
field of sustainability science, and complexity science probably
offers more solutions for coping with this complex challenge
than safety science. However, sustainability science can benefit
from safety science by using its lessons learned in regulation
and certification. Accordingly, we recommend bringing these
three research fields together.

29 https://scsc.uk/ge

Figure 17. Combing dynamic software execution (»SIL 4 cloud«) with dynamic risk management.

https://scsc.uk/ge

42

Recommendations, research directions and roadmap

Recommendation: Context-aware behavior in
dynaSoS

Usage scenarios for dynamic systems of systems are often
pictured as smart scenarios, including, for example, smart
farming, smart health, smart mobility, and smart city, as
illustrated in our first report (Groen, et al., 2022). The »smart-
ness« of these scenarios is perceived by no one but humans,
and context awareness is often the thing behind such smart
behaviors (Pinheiro, et al., 2018). Therefore, the realization of
the systems of the future requires investment to overcome cur-
rent engineering challenges related to context-aware systems,
which are amplified even more considering the characteristics
of dynaSoS. We recommend further research in the field of
software engineering of context-aware systems, covering both
design time and runtime aspects.

Motivating challenges

1. Uncertainty and changing operational environment:
The constituent systems of a dynaSoS are deployed in open
and dynamic environments, which makes it harder to antici-
pate all relevant contexts that may influence their operation
and their system-supported user tasks.

2. Uncertainty due to autonomous and intelligent com-
ponents: Autonomous systems that use data-driven soft-
ware components make their decisions based on an internal

representation derived from data. Such systems have an
implicit uncertainty regarding their functionalities.

3. Design of context-aware behavior: Even considering our
increasing ability to sense the context (i.e., to identify WHAT
context is), it is still rather difficult to derive context-aware
functionalities (i.e., to identify HOW context influences or
can influence tasks).

4. Macro-level context awareness: Context may not
influence only the constituent systems but also the system
of systems as a whole. It is therefore important to unders-
tand the role of context at the macro level of a system of
systems.

5. Interoperability for shared context awareness: When
constituent systems cooperate to achieve a high-level (SoS)
goal, their partial understanding of the context hinders
efficient collaboration. Shared context understanding calls
for improved interoperability.

Research directions

The following research directions are envisioned to follow this
recommendation:

Data-driven context modeling
The elicitation of context-aware functionalities can be impro-
ved through data-driven context modeling. Context modeling

Figure 18. Clustering of challenges for context-aware behavior and related research directions.

Figure 19. While engineers in the »Green Company« try to

figure out by themselves how context can be used to improve

their field robots, »Blue Company« engineers are supported by

a data-driven context-modeling approach.

Figure 20. Derivation of the contextual element »distance«

from two other contextual elements. When there are several

contextual elements, deriving new contextual elements may

not be trivial.

43

Recommendations, research directions and roadmap

refers to the activities involved in creating conceptual models
of the context that express the relationships between the
context and system-supported tasks of interest, aiming at
providing engineers with better support to devise context-
aware functionalities. The implementation of these data-driven
context modeling approaches requires research on algorithms
to support the analysis of context and its influence on tasks.
Figure 19 illustrates the contrast between two companies,
where only one of them uses data-driven context modeling.
Early initiatives in this direction can be found in (Rodrigues,
et al., 2019; Knauss, et al., 2016; Falcão, et al., 2022). It is
necessary to further investigate, develop, and test different
algorithms that specifically analyze contextual data and derive
supporting knowledge to help requirements engineers identify
novel context-aware functionalities.

In addition to the development of these algorithms, it is also
necessary to carry out research on how to represent the know-
ledge gained through them. In other words, it is necessary to
develop and evaluate context model representations (i.e., con-
text meta-models) to support the elicitation of context-aware
functionalities. Such representations must be described formal-
ly in order to fit automated context-modeling approaches, and
must be expressive enough to cover a broad range of systems,
independent of their domains. Initial steps in this direction can
be found, for example, in (Falcão, et al., 2022). However, there
is a need for more research on the foundations of context
model representations to further develop their expressiveness,
as well as empirical research to validate them. Moreover, it is
necessary to fill the gap between the output of the algorithms
and the context model representations by providing tool sup-
port to software engineers to generate the concrete context
models (initial results in this area can be found in (Falcão, et al.,
2022).

Continuous context modeling
Data collection is required to enable any data-driven approach.
Once the data processing algorithms and modeling tools are in
place, most of the effort is shifted to the data collection step.
Therefore, investing in automated strategies for data collec-
tion will improve the efficiency of engineering context-aware
functionalities. Once data collection is automated, the way will
then be paved for the implementation of continuous context
modeling, where context-modeling activities, which nowadays
are performed at design time, will happen at runtime. Continu-
ous context modeling will enable software engineers to disco-
ver innovative smart behaviors faster by helping them learn
about the opportunities provided by the dynamic environment
as soon as they emerge from the contextual data being conti-
nuously collected and fed into context-modeling tools.

Quality of contextual data
Based on initial contextual data or information, it is possible
to derive new contextual elements. Consider, for example, a
smart mobility solution that collects, among other data, the
location of the user and the vehicles. A trivial example is the
derivation of the contextual element distance (see Figure 20).
This derivation is done through an operation that someone has
to implement.

A comprehensive catalog of operators can play a decisive role
in the definition of context-aware functionalities. In a scena-
rio with dozens of contextual elements and multiple systems
generating data that are relevant for the system-supported
tasks, the ability to derive new contextual elements from
primary ones can provide system designers with shortcuts to
better understand how the context may influence system-sup-
ported tasks. As the possession of such a catalog would put
companies who have it in an advantageous position compared
to those who do not have it, we see the possibility for research

44

Recommendations, research directions and roadmap

to play a prominent role in fostering the development of an
open catalog of contextual operators. These operators take
contextual elements as input and also produce contextual
elements. Therefore, it is also necessary to maintain an open
vocabulary of contextual element types. Figure 21 illustrates
two services, Service 1 and Service 2, that benefit from an
open contextual operator catalog to derive more contextual
elements.

Middlewares for interoperable contextual data
We envision the development of middlewares to support the
interoperability of contextual data, so that constituent systems
in a dynaSoS can have a shared understanding of their (shared)
context. Enabling such a shared understanding is important for
at least two reasons. First, although constituent systems are
operated independently, they interact with each other either
directly or indirectly. The more these constituent systems are
able to share a common understanding of their context, the
better their chances of implementing smart behaviors at the
system-of-systems level. The other reason is that all constituent
systems are potential context sources. Therefore, if contextual
information about each system can be made available to the
others through a standardized protocol, it becomes easier for
each part to provide their unique contributions to the overall
context. For example, while more than one constituent system
might be able to sense, by their own means, the current
weather conditions, only each particular system knows about
its internal operational status, which may include, for example,
their energy autonomy or current limitations in its capabilities.

The design and deployment of such a middleware can lead to
both edge and cloud solutions, meaning that further research
can be developed in both directions. In the edge, we see some
scenarios where either local infrastructure or a federated net-
work of such a middleware hosted by the constituent systems
can be provided to receive and distribute contextual informa-
tion. On the other hand, the rise of 5G networks might enable

cloud-based solutions for such middleware and support several
smart scenarios, independent of their location and in a more
cost-effective manner. Figure 22 illustrates a smart farming
scenario where elements such as tractors, weed control robots,
and an irrigation system send/get contextual information to/
from a middleware for context.

Decision-making under uncertainty
Machine learning and data-driven models are powerful means
to collect relevant information about the context. A major
issue with these models is that their output is subject to
uncertainty. Many approaches exist to minimize uncertainty,
but some residual uncertainty can hardly be avoided. DIN SPEC
92005 “Artificial Intelligence – Uncertainty Quantification in
Machine Learning” is currently under development and will
collect existing approaches to measure the residual uncertainty
and clarify the various notions of uncertainty. Measurement
also includes approaches for estimating the uncertainty during
operation. Some proposals (Groß, et al., 2022) have already
been made for the consideration of this uncertainty in deci-
sion-making. Further research is required to deal with depen-
dencies of uncertainties. How can uncertainties be combined
if there is a sequence of outputs with a related sequence of
uncertainties? Can decision-making take advantage of this
or is this not possible because of stochastic dependencies?
How can uncertainties of different data-driven models be
combined? Furthermore, it is worth investigating synergies
between the measurement of uncertainty (Groß, et al., 2022)
and the measurement of robustness (Siedel, et al., 2022) . Can
these approaches be combined to make them beneficial for
decision-making?

Figure 21. Two constituent systems, Service 1 and Service 2, in

a smart mobility scenario collect contextual data from diffe-

rent sources. Both benefit from an open catalog of contextual

operators to derive new contextual elements and store the

corresponding contextual data. Arrows indicate data flow.

Figure 22. Machines, sensors, and other software-based

elements send and retrieve context information from a

middleware.

45

Recommendations, research directions and roadmap

Recommendation: Automated software enginee-
ring for dynaSoS

The automation of software engineering tasks has been a
long-standing goal for research and industry. The evolution of
technologies (e.g., cloud, fog, edge, serverless, ...), the scale
of systems being designed, and advances in analysis methods
all influence each other and perpetuate the need for research
in this area. For example, the availability of a large number of
software repositories (e.g., Github) combined with new advan-
ces in code analysis based on very large deep learning models
(such as OpenAI‘s Codex30, Code2vec31) have triggered a wave
of new work to automate tasks that were previously very
difficult or impossible to automate (Yang, et al., 2022), such
as generating code from natural language, extracting requi-
rements from text, etc. (see, for instance, already available
tools like Microsoft’s Github Copilot32, Tabnine33, or the recent
Amazon Web Service Codewhisperer34). One recommendation
is to continue research efforts regarding the automation of
software engineering tasks (including, but not limited to, AI-
based approaches) while ensuring that these new methods can
be empirically validated on realistic setups. Another important

point is to ensure that the underlying analytics methods do
not create a lock-in effect (for example, only a few organiza-
tions such as Microsoft, Nvidia, OpenAI, Facebook, etc. can
train very large deep learning text models), to consider and
mitigate the underlying costs in terms of power consumption,
and to continue research in terms of data privacy and model
explainability.

Motivating challenges

1. Impact of scale and complexity on engineering tasks:
The scale of the systems to be designed as well as the
multiplicity of stakeholders involved make engineering tasks
more and more difficult. This makes it harder to automate
them completely but generates demands to automate them
as much as possible in order to implement them within
cost constraints. Engineering tasks include verification and
validation. Automated verification and validation during
operation are needed to collect the required evidences for
quality assurance.

Figure 23. Clustering of challenges for automated software engineering and related research directions.

30 https://openai.com/blog/openai-codex/

31 https://code2vec.org/

32 https://github.com/features/copilot

33 https://www.tabnine.com/

34 https://aws.amazon.com/codewhisperer/

https://openai.com/blog/openai-codex/
https://www.art-sciencefactory.com/complexity-map_feb09.html
https://code2vec.org/
https://github.com/features/copilot
https://www.tabnine.com/
https://aws.amazon.com/codewhisperer/

46

Recommendations, research directions and roadmap

2. Response time addressing asynchrony of continuous
developments: Because dynaSoS are open heterogeneous
systems continuously developed by different organizations,
software engineering needs to be faster in order to react
in time to unexpected events. In a safety-critical context,
changes demand re-certification, which is too time-consu-
ming for many dynaSoS use cases.

3. Shortage of skilled workers, continuous education,
and the need for automation and low-code solutions:
The technological trends underlying our dynaSoS vision
such as AI, Big Data, data science, IoT, 5G & &G, cybersecu-
rity, as well as green energy are seen as disruptive and will
lead to radical changes, not only in the way we work, but
also in the skills required (Li, 2022).

Research directions

The following research directions are envisioned to address this
recommendation:

Pursuing efforts in research in applied AI for software
engineering
The latest advances in the field of AI, in particular the develop-
ment of deep learning models and representation-based
learning methods, allow for applications that were previously
impossible, whether in natural language processing, computa-
tional vision, or multimodal information processing (i.e., com-
bining several modalities such as text, images, sound, video,
etc.). Software engineering is, of course, taking advantage of
these advances, and the applications of these AI techniques
within software engineering are numerous (see, for example,
sub-domains such as Artificial Intelligence for Software Engi-
neering (AI4SE), Artificial Intelligence for IT Operations (AIOps),
or Artificial Intelligence driven Development Environments
(AIDE)). In the near future, new advances in deep learning will
continue to infuse software engineering and new applications
(especially multimodal ones) will emerge.

We recommend continuing research efforts in this direction,
especially regarding multimodality. This should include the
joint use of code as text but also of so-called intermediate
representations (such as AST, or the SSA form, which are alrea-
dy in use) as well as other types of input data such as architec-
tural diagrams, images, or even sound.

Research methods and infrastructure for validating soft-
ware engineering automation
As systems to be engineered grow in size and complexity,
empirically validating software engineering methods becomes

harder and harder. This point was (and still is) regularly men-
tioned by the software engineering community (see (Briand,
et al., 2017) (Méndez Fernández, et al., 2019)). As the scale,
dynamics, and complexity of systems increase, it will be increa-
singly difficult to access and collect data on these systems (see,
for example, the IBM CodeNet project35) and to properly set up
experiments to try to falsify new methods.

It is especially important to recognize that advances in automa-
ted software engineering are likely to emerge from collabora-
tion with industrial research (see, for instance, what Facebook
is doing (Bader, et al., 2021)). This is due, on the one hand, to
the increasing pressure in terms of software engineering that
companies developing complex digital solutions are subject,
but also to the fact that some of these companies have access
to both skills and data that escape national research organi-
zations today. In this respect, it is necessary to continue and
develop the existing research and development strategy of
involving industry, but it is also necessary to ask questions
regarding the responsibility of the digital giants as research
actors.

Impact of advanced automation capabilities on software
engineering
Advances in analytics and AI are already having an impact on
the way software engineering teaching and learning is done
(Kästner, et al., 2020; Imai, 2022; Puryear, et al., 2022; Ernst,
et al., 2022). Software engineers must increasingly rely on
tools that automate laborious tasks, and must also understand
in principle how these tools work and what their strengths
and weaknesses are. Discussions about the impact of AI on
software engineering are not unlike those of the late 1980s
(before the second AI winter) (Ford, 1987; Partrdige, et al.,
1987). At that time, AI was mostly synonymous with expert
systems. It is worth noting that automation tools (whether AI-
based or not) were integrated into software engineering tools
where they made the most sense. In a sense, these are tools
that need to be mastered. This is why further investigation
is necessary on topics such as explainability, data protection,
safety and security issues (such as adversarial attacks), and
handling of causality (see Recommendation: Engineering of
emergence and resilience). For this, transdisciplinary transfer is
equally necessary to explore existing solutions in other fields

Recommendation: Reliable data management for
dynaSoS

DynaSoS systems are data-intensive systems, where different
organizations may need to share information and where value
is created from data from various sources. As such, dynaSoS

35 https://developer.ibm.com/exchanges/data/all/project-codenet/

https://developer.ibm.com/exchanges/data/all/project-codenet/

47

Recommendations, research directions and roadmap

call for attention toward data management. »Data manage-
ment« is an overarching term that covers multiple data-rela-
ted aspects, such as data architecture, data acquisition, data
storing, data quality, data integration, and data governance.
In dynaSoS, large amounts of data are generated in diverse
formats and with varying degrees of quality. This poses both
technical and organizational challenges to the design, imple-
mentation, and operation of dynaSoS: On the one hand, the
constituent systems need to fundamentally rely on data to
implement their autonomous behaviors and smartness; on the
other hand, data reliability is defied by a high level of hetero-
geneity and openness, which characterize dynaSoS. Therefore,
we envision further research toward reliable data management
for dynaSoS: There is a need to find ways of architecting,
deploying, operating, and assuring reliable data for dynaSoS in
order to make these systems more resilient to the open nature
of the environments in which these systems operate. As poten-
tial research directions, we see investing in data acquisition
methods optimized for dynaSoS; designing and developing
data architectures for dynaSoS; and exploring adequate data
governance designs for dynaSoS.

Motivating challenges

1. Data acquisition, exchange, and interoperability:
First of all, because dynaSoS are data-intensive systems,
they face challenges related to Big Data and require clear
data management and a good governance strategy to be
in place. Moreover, quantity is not a synonym of either
»quality« or »suitability«. Different systems have different
requirements and large volumes of data require adequate
processing steps to be truly beneficial for systems.

2. Heterogeneous constituent systems: DynaSoS demand
continuous integration of disparate data, which challen-
ges not only the design of constituent systems but also
the monitoring of high-level (i.e., SoS-level) behavior.
Furthermore, since each constituent system is technically
and operationally independent from the others, black-box
integration is required.

3. Heterogeneous organization: In such diverse scenarios
as we see in dynaSoS (several stakeholders, each having its
own particularities – including, for example, business goals,
operational procedures, technical stack), the variety in data
formats and quality is enormous. Apart from the direct
implication for interoperability, it is a major challenge to
create and foster synergies among participants.

4. Data quality, lifecycle management, and data gover-
nance: Data ownership and usage rights are an open
organizational issue, with legal/ethical implications.

Research directions

The following research directions are envisioned to address this
recommendation:

Smart data acquisition
Research on data acquisition can help to make data manage-
ment for dynaSoS more reliable as it contributes to improving
the quality of the data made available. Where the amount of
accessible data is larger than what systems are able to process
within a reasonable amount of time, a desirable goal is to
have constituent systems deal only with »as-much-as-nee-
ded« data. This requires the ability of filtering out what is not

Figure 24. Clustering of challenges for reliable data management and related research directions.

48

Recommendations, research directions and roadmap

necessary (Younan, et al., 2020). The implementation of smart
data filtering may be achievable through context-aware data
acquisition, which should also be fully automated (Taivalsaari,
et al., 2017).

From the SoS point of view, a holistic view on data acquisition
(as well as data storage and data processing) may improve the
overall system by deriving new domain-relevant data based on
primary data sources. This idea can be illustrated by already
existing traffic apps: Based on individual information about
the position and speed of cars, such solutions are able to
derive high-level traffic information. Likewise, based on the
large streams of data being generated by distributed sources
deployed in physical environments, high-level information can
be generated and made available for all participants, which
may increase the energy efficiency of the SoS as a whole. As
participants might tend to optimize their individual efficiency,
it becomes necessary to architect dynaSoS in such a way that
collaboration is encouraged, easy, and rewarding.

Data architectures for dynaSoS
The study of alternatives and improvements in data architec-
tures for dynaSoS is also an important research direction to
follow for reliable data management. First, appropriate archi-
tecture designs determine how quality attributes are achieved,
and interoperability is a core architecture driver for dynaSoS. In
some particular scenarios where participation and geographic
position of the constituent systems are entirely open, even
enabling unconstrained data exchange among participants
is an ambitious undertaking (Tsigkanos, et al., 2019). Besides
that, further research on semantic interoperability may also
add to the development of adequate data architectures, as the
usage of semantically annotated data facilitates neutralizing
data format restrictions (Franke, et al., 2021). Second, the
more open a dynaSoS is, the higher the potential of conflicting
goals between constituent systems and the SoS. Therefore,
research on data architectures that motivate trust and coope-
ration among participants is needed. In this direction, there
are at least two possible ways to go: One opportunity lies in
architectures based on multi-agent systems, where trust and
reputation models can be developed and provide references
for participants (Fang, 2021); another is to invest in data trust
platforms on which constituent systems could rely to share
data in a trustworthy manner.

Concerning the data storage strategy, the usage of architectu-
res that favor data replication across constituent systems might
call for further research on eventual consistency. It is necessary
to invest in methods aimed at making the implementation of
eventual consistency both practical and suitable for the open
and heterogenic nature of dynaSoS.

Finally, further advancements in edge computing may enable
more alternatives in terms of data architectures. Because

constituent systems may operate in resource-constrained
environments, providing these systems with full-fledged edge
infrastructure is a possible approach (Tsigkanos, et al., 2019),
including the capability of handling and processing data
(Younan, et al., 2020). Conversely, an edge infrastructure itself
often has constrained resources that require investments in
its efficiency. Tools and methods focused on building edge
computing solutions will be of great help for engineers and
should cover different dimensions of efficiency, including, for
example, storage, energy consumption, and time behavior.

Trustful data governance for dynaSoS
The legal and ethical issues raised by data ownership call
for research on data governance for dynaSoS. From a purely
organizational perspective, investment in legal frameworks
(both general and domain-specific ones) is necessary, as pure
technical enforcement can be highly challenging. Thus, whene-
ver technical enforcement cannot suffice, an appropriate legal
framework should protect stakeholders from misuse of data.
Either way – be it organizational or technical –, research on
software engineering may also contribute to a data governan-
ce model that facilitates trust among participants.

From a technical perspective, it should be clear for partici-
pants in a dynaSoS who owns the data and what data usage
policies are in place. Therefore, research on data usage policy
enforcement for distributed systems is promising to foster the
development of trustful dynaSoS. Research opportunities in
this direction include the advancement of technologies that
embed cross-company trust in their constructs. Whenever par-
ticipants cannot trust each other, mediation of data exchange
through specialized components that take responsibility for
managing trust can be put in place. Therefore, research on
the design, development, deployment, and operation of either
central or distributed trustee platforms is recommended.

Alternatively, blockchain is a technology that is regarded as a
promising data management enabler in many domains, in par-
ticular for establishing trust in a technical manner. Blockchain
is expected to help supply/access data for/in different devices
(Miloslavskaya, et al., 2019) and tackle security and privacy
concerns related to collected data in the future (Ahlawat, et
al., 2021). On the other hand, it is worth noting that block-
chain technology can be highly energy-demanding, in parti-
cular in large-scale systems. Yet another option that has been
investigated in recent years and that combines technical and
organizational elements is the design of federated data spaces
to enable trusted data exchange across heterogeneous parties
(Bohlen, et al., 2018).

With respect to methods and frameworks, it is recommended
investing more in inter-organizational data governance, as
most research has neither focused on it (Nielsen, 2017) nor
explained how data ownership and control can be ensured in

49

Recommendations, research directions and roadmap

inter-organizational settings, both at company and individual
levels. Furthermore, given the inherent complexity of dynaSoS,
studies are necessary to explore and identify adequate data
governance designs »for one-to-one, one-to-many, and many-
to-many inter-organizational settings« (Abraham, et al., 2019).

Roadmap

We organized the proposed research directions into a road-
map that features two dimensions: time and impact. Figure 25
illustrates a detailed view of the roadmap. The colors indicate
to which of the six research recommendations each direction
belongs. This roadmap is based on several workshops with
external and internal experts that were organized throughout
the project.

The horizontal axis features the time dimension. It is used to
indicate whether a certain research direction is perceived as
a short-, mid-, or long-term direction to be pursued. At this
point, it is important to state that the research directions are,
as the title indicates, »directions« -- and therefore neither
starting nor finishing lines. When a particular research direc-
tion is placed on the right side of the roadmap, this does not
imply that research on the direction should be delayed, but
rather that it is perceived as a long-term research topic – such
research directions are expected to demand more effort.

In general, short-term directions are characterized by two
things: First, they are topics where research has already been
actively developed and must be further pursued toward the
realization of dynaSoS. Second, some of them can be unders-
tood as corner stones, or building blocks, for others. The
boundaries between the research directions are not sharp, and
aspects of each direction can be found to contribute to other
directions. Two such examples are the research directions
»Smart data acquisition« and »Quality of contextual data«. As
dynaSoS are data-intensive systems, it is natural to think about
their precedence over mid-term directions such as »Data-dri-
ven context modeling« and »Continuous context modeling«.

The vertical axis features the impact dimension. Impact here
refers to the potential impact of the research direction in
society. It is not meant to imply that the research directions
indicated in the lower area of the roadmap are less important
than those in the upper area. Instead, it is supposed to mean
that the perceived impact of the directions in the upper area
of the roadmap is expected to be more tangible for society
and industry. Research directions that feature sustainability
and applied software engineering research, for example, are
regarded as high-impact directions.

Figure 25. Roadmap for dynaSoS featuring 6 recommendations and their respective 19 research directions.

Grüne Hügel mit Straße in die Ferne

50

51

Summary and outlook

Summary

In order to understand the broad role played
by the topic of dynamic systems of systems,
six different application areas were examined.
Concrete example systems also helped us to
understand the requirements for dynaSoS and
were used to derive the research questions. A
large number of relevant domains are affected
by dynaSoS.

The research topics were then identified
through a variety of interviews, expert
workshops, and a broad literature review.
The research architecture first helped us
to better understand dynaSoS. This then
allowed research challenges to be derived and
sorted into clusters. Various themes from the
clusters then led to recommendations when
bundled together. Six core recommendations
were derived for the following areas: Value-
based engineering of dynaSoS; Engineering
of emergence and resilience; Reliable data
management for dynaSoS; Automated soft-
ware engineering for dynaSoS; Context-aware
behavior of dynaSoS; and Engineering of safe
and highly trustworthy dynaSoS.

Each of these recommendation areas was
further detailed and finally sorted into a road-
map in terms of potential (impact) and time
perspective.

Reflection

We presented a research roadmap for the
software engineering of trustworthy dynamic
systems of systems. The roadmap we develo-
ped is based on interviews with experts and
decision makers, workshops, and systematic
literature reviews. The literature reviews
include related roadmaps published before the
project (e.g., (Northrop, et al., 2006; Carleton,
et al., 2021; SafeTRANS, 2019; Kagermann, et
al., 2017)) or during the project (see (Eletronic
Components and Systems, 2023; INCOSE,
2023)). Some of those roadmaps focus on the
future of software engineering while others
focus on the future of systems engineering.
Some highlight the large scale of systems
while others focus on autonomy or safety and
security. We focused on software engineering,
dynamics, and autonomy in systems of sys-
tems, and on high trustworthiness. This focus

Summary and outlook

In this chapter, we conclude this report by reflecting on the results, discuss
its limitations, and provide an outlook on future development.

52

Summary and outlook

is unique. Another differentiation concerns the
people involved. Developments are driven or
blocked by people who have the authority or
resources to make other people follow them.
Our roadmap has a clear focus on Germany.
We involved authors from related German
roadmaps (SafeTRANS, 2019; Kagermann, et
al., 2017) and discussed existing roadmaps
with stakeholders who understand what
drives and what blocks envisioned innovations
in particular domains. A majority of these
stakeholders mentioned that serious technical
challenges are often not the main obstacle
to implementing visions; rather, the problem
are complex, systemic issues of the current
regime. We considered this main issue in our
roadmap but focused on technical, software-
related challenges.

Limitations

We limited our recommendations to six fields
of action. We highlighted certain challenges
and related research directions for each of the
six recommendations. The recommendations
as well as their challenges and research direc-
tions are relevant from our point of view, but
not complete.

Our framework for describing dynaSoS in
terms of dimensions and deriving clusters
of challenges from this description is also
not necessarily complete. However, it was
sufficient to structure all the challenges we

collected during the project. It also supported
us in formulating the challenges by providing
context.

Outlook

The framework could be filled with further
research challenges in the future and help to
identify further connecting points between
research activities. It provides a terminolo-
gy for discussing dynaSoS that is similar to
the way RAMI 4.0 provides a terminology
for discussing Industry 4.0. So far, there is
no platform for dynaSoS. Germany has a
platform for Industry 4.0 and a platform for
learning systems. In the future, we may have
a platform for dynaSoS. As long as no such
platform exists yet, we invite researchers and
practitioners to get in touch with us.

Funding agencies may use this work to
identify research topics within their scope
of funding or to get inspirations for their
funding strategy. The amount of investment
is an important factor for the implementation
of the roadmap, but there are a lot of other
factors that need to be considered in order to
estimate the timeframe for realizing dynaSoS
in Germany and beyond. These include, for
instance, the gap between the state of the art
and the state of the practice, systemic issues
that hinder changes of current regimes (Geels,
2002), and collaboration with the global
research community.

53

54

References

Abraham R., Schneider J. and Vom Brocke J. Data governance: A conceptual framework, structured review, and research
agenda [Journal] // International Journal of Information Management. - 2019. - pp. pp.424-438.

Adedeji K. and Hamam Y. Cyber-physical systems for water supply network management: basics, challenges, and roadmap.
[Journal] // Sustainability. - 2020.

Adler R. [et al.] Research Report SIL4CLOUD, Digitale Schiene Deutschland [Report]. - 2022.

Ahlawat P. and Rana C. An Era of Recommendation Technologies in IoT: Categorisation by techniques, Challenges and Future
Scope [Journal] // Journal of Science & Technology. - 2021.

Ahmed A. [et al.] Service management for IoT: requirements, taxonomy, recent advances and open research challenges [Jour-
nal]. - [s.l.] : IEEE Access, 2019.

Ali O., Ishak M. and Bhatti M. Emerging IoT domains, current standings and open research challenges: A review [Journal]. -
[s.l.] : PeerJ Computer Science, 2021.

Amade B. and Nwakanma C. Identifying Challenges of Internet of Things on Construction Projects Using Fuzzy Approach
[Journal]. - [s.l.] : Journal of Engineering, Project & Production Management, 2021.

Antonino P. [et al.] Continuous engineering for Industry 4.0 architectures and systems [Article] // Software: Practice and Expe-
rience. - [s.l.] : Wiley Online Library, 2022.

Arnold R. D. and Wade J. A Definition of Systems Thinking: A Systems Approach [Journal] // Procedia Computer Science. -
2015. - pp. 669-678.

Atlam H. [et al.] Integration of cloud computing with internet of things: challenges and open issues [Conference] // EEE inter-
national conference on internet of things (iThings) and IEEE green computing and communications (GreenCom) and IEEE cyber,
physical and social computing (CPSCom) and IEEE smart data (SmartData). - 2017.

Avizienis A. [et al.] Basic concepts and taxonomy of dependable and secure computing [Journal]. - [s.l.] : IEEE Transactions on
Dependable and Secure Computing, 2004.

Bader J. [et al.] AI in Software Engineering at Facebook [Journal] // IEEE Software. - 2021. - 4 : Vol. 38. - pp. 52-61.

Badr Y., Zhu X. and Alraja M. Security and privacy in the Internet of Things: threats and challenges [Journal]. - [s.l.] : Service
Oriented Computing and Applications, 2021.

References

55

References

Balduf F. [et al.] System of Systems Engineering in Deutschland: Bestandsaufnahme und Ausblick. [Article] // Tagungsband zum
Tag des Systems Engineering. - [s.l.] : Gesellschaft für Systems Engineering, 2022. - pp. 26-30.

Barabási A.-L. and Pósfai M. Network Science [Book]. - 2016.

Bauer T., Antonino P. O. and Kuhn T. Towards Architecting Digital Twin-Pervaded Systems [Conference] // 2019 IEEE/ACM 7th
International Workshop on Software Engineering for Systems-of-Systems (SESoS) and 13th Workshop on Distributed Software
Development, Software Ecosystems and Systems-of-Systems (WDES). - 2019. - pp. 66-69.

Bleiholder J. and Naumann F. Data Fusion [Journal] // ACM Comput. Surv.. - 2009. - 1 : Vol. 41. - p. 41.

Bloomfield R. and Rushby J. Assessing Confidence with Assurance 2.0 [Report] : CSL Technical Report SRI-CSL-2022-02.
- 2022.

Bohlen V. [et al.] Open Data Spaces: Towards the IDS Open Data Ecosystem [Report]. - [s.l.] : International Data Spaces Associa-
tion (ed.), 2018.

Bolukbasi T. [et al.] Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings [Conference] //
Advances in Neural Information Processing Systems 29 (NIPS 2016). - 2016.

Booch G. The history of software engineering [Journal] // IEEE Software. - 2018. - 5 : Vol. 35. - pp. 108-114.

Bosch J. Continuous Software Engineering [Book]. - [s.l.] : Springer, 2014.

Brandt S. and Siebert J. Challenges related to system-of-systems for greening and climate adaptation in smart cities [Report].
- 2022.

Briand L. [et al.] The case for context-driven software engineering research: Generalizability is overrated [Journal] // IEEE Soft-
ware. - 2017. - 5 : Vol. 35. - pp. 72-75.

Brunello G. and Wruuck P. Skill Shortages and Skill Mismatch in Europe: A Review of the Literature [Journal] // IZA Discussion
Paper No. 12346. - 2019. - p. 35.

Bundesgesetzblatt Product Liability Act of 15 December 1989 (Federal Law Gazette I, p. 2198), last amended by Article 5 of
the Act of 17 July 2017. - [s.l.] : Federal Law Gazette [Bundesgesetzblatt] I p. 2421, 1989.

Burton R. M. [et al.] GitHub: exploring the space between boss-less and hierarchical forms of organizing [Journal] // Journal of
Organization Design. - 2017. - 10.

Carleton A. [et al.] Architecting the future of software engineering: A national agenda for software engineering research and
development [Report]. - [s.l.] : Software Engineering Institute., 2021.

Casañ M., Alier M. and Llorens A. Teaching ethics and sustainability to informatics engineering students, an almost 30 years’
experience [Journal]. - [s.l.] : Sustainability, 2020.

Castellani B. and Gerrits L. Map of the complexity sciences [Report]. - [s.l.] : Art and Science Factory, LLC, 2021.

Castelluccia C. and Le Métayer D. Understanding algorithmic decision-making: Opportunities and Challenges [Report]. - [s.l.] :
EPRS | European Parliamentary Research Service, 2019.

56

References

Chen Z. [et al.] Characteristics and technical challenges in energy Internet cyber-physical system [Conference] // IEEE PES Innova-
tive Smart Grid Technologies Conference Europe (ISGT-Europe). - 2016.

Cook R. I. How Complex Systems Fail [Report] / Cognitive technologies Laboratory ; University of Chicago. - 1998.

Das B. An overview on big data: characteristics, security and applications [Journal] // Journal of Network Communications and
Emerging Technologies (JNCET). - 2020. - 9 : Vol. 10. - p. 6.

Daun M. [et al.] Collaborating multiple system instances of smart cyber-physical systems: a problem situation, solution idea, and
remaining research challenges [Conference] // IEEE/ACM 1st international workshop on software engineering for smart cyber-phy-
sical systems. - 2015. - pp. 48-51.

Dey A. Understanding and using context [Journal]. - [s.l.] : Personal and ubiquitous computing, 2001.

Diène B. [et al.] Data Management Mechanisms for IoT: Architecture, Challenges and Solutions [Conference]. - [s.l.] : 5th Inter-
national Conference on Smart and Sustainable Technologies (SpliTech), 2020.

Dörner D. Die Logik des Mißlingens. Strategisches Denken in komplexen Situationen [Book]. - 2003.

Dridi C., Benzadri Z. and Belala F. System of Systems Modelling: Recent work Review and a Path Forward [Conference] // 2020
International Conference on Advanced Aspects of Software Engineering (ICAASE). - [s.l.] : IEEE, 2020. - pp. 1-8.

Ebert C. and Hochstein L. DevOps in Practice [Journal] // IEEE Software. - 2022. - 1 : Vol. 40.

Eletronic Components and Systems Strategic Research and Innovation Agenda 2023 [Report]. - 2023.

Ernst N. and Bavota G. AI-Driven Development Is Here: Should You Worry? [Journal] // IEEE Software. - 2022. - 2 : Vol. 39. - pp.
106-110.

EU Commission EC Staff Working Document: Delivering on the UN’s Sustainable Development Goals – A comprehensive
approach [Report] / European Commission. - 2020.

Falcão R. [et al.] The practical role of context modeling in the elicitation of context-aware functionalities: a survey [Conference]
// 2021 IEEE 29th International Requirements Engineering Conference (RE). - [s.l.] : IEEE, 2021. - pp. 35-45.

Falcão R., King R. and Carvalho A. xPACE and TASC Modeler: Tool support for data-driven context modeling [Conference] //
REFSQ 2022. - Birmingham : CEUR-WS, 2022.

Falcão R., Pestana M.C. and Vieira V. TASC4RE: a data-driven context model to support the elicitation of context-aware func-
tionalities [Conference] // ER Forum. - 2022.

Fang Z. System-of-Systems Architecture Selection: A Survey of Issues, Methods, and Opportunities [Journal] // IEEE Systems
Journal. - 2021.

Farley D. Modern Software Engineering [Book]. - [s.l.] : Addison-Wesley Professional, 2022.

Fayollas C., Bonnin H. and Flebus O. SafeOps: A Concept of Continuous Safety [Conference] // 2020 16th European Dependa-
ble Computing Conference (EDCC). - 2020.

57

References

Feth P. Dynamic Behavior Risk Assessment for Autonomous Systems [Book] : PhD Thesis / PhD Theses in Experimental Software
Engineering, Band 67. - [s.l.] : Fraunhofer Verlag, 2020.

Fitzgerald B. and Stol K. Continuous software engineering: A roadmap and agenda [Article] // Journal of Systems and Soft-
ware. - [s.l.] : Elsevier, 2017. - Vol. 123. - pp. 176-189.

Ford L. Artificial intelligence and software engineering: a tutorial introduction to their relationship [Journal] // Artificial Intelligen-
ce Review. - 1987. - Vol. 1. - pp. 255-273.

Franke M., Hribernik K and Thoben K. Semantic Interoperability for Logistics and Beyond [Book Section] // Dynamics in Logis-
tics. - [s.l.] : Springer, 2021.

Freitag C. [et al.] The real climate and transformative impact of ICT: A critique of estimates, trends, and regulations [Journal] //
Patterns. - 2021. - 9 : Vol. 2.

Gao J. [et al.] A Survey on Deep Learning for Multimodal Data Fusion [Journal] // Neural Computation. - 2020. - 5 : Vol. 32. - pp.
829–864.

Geels F. Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study [Journal].
- [s.l.] : Research Policy, 2002.

Geihs K. and Wagner M. Context-awareness for self-adaptive applications in ubiquitous computing environments [Conference]
// International Conference on Context-Aware Systems and Applications. - [s.l.] : Springer, 2012.

Geisslinger M. [et al.] Autonomous Driving Ethics: from Trolley Problem to Ethics of Risk [Journal]. - 2021.

George J and Nazeh M. Challenges Faced by CIOs in cloud and IoT based organizations-A Study on IT and Business Leaders
[Journal]. - [s.l.] : International Journal on Informatics Visualization, 2019.

Glymour C., Zhang K. and Sprites P. Review of Causal Discovery Methods Based on Graphical Models [Journal] // Frontiers in
Genetics. - 2019. - Vol. 10.

Goli T. and Kim Y. A Survey on Securing IoT Ecosystems and Adaptive Network Vision [Journal]. - [s.l.] : International Journal of
Networked and Distributed Computing, 2021.

Gorod A., Sauser B. and Boardman J. System-of-systems engineering management: A review of modern history and a path
forward [Journal] // IEEE Systems Journal. - 2008. - 4 : Vol. 2. - pp. 484–499.

Groen E. [et al.] Anwendungsfälle zu dynamischen Systemen der Systeme der Zukunft [Online]. - 2022. - https://www.iese.
fraunhofer.de/content/dam/iese/dokumente/media/studien/whitepaper-dynamic_systems_of_systems-dt-fraunhofer_iese.pdf.

Gröger J. [et al.] Green Cloud Computing - Lebenszyklusbasierte Datenerhebung zu Umweltwirkungen des Cloud Computing
[Report]. - [s.l.] : Umweltbundesamt, 2021.

Groß J. [et al.] Architectural Patterns for Handling Runtime Uncertainty of Data-Driven Models in Safety-Critical Perception
[Conference] // SAFECOMP 2022: Computer Safety, Reliability, and Security. - 2022. - pp. 284-297.

Hauer M. P. and Zweig K. Chancen und Risiken algorithmischer Entscheidungen [Article] // Human Resources Manager.. - 2021.
- pp. 48-53.

58

References

Hofmeister C. [et al.] A general model of software architecture design derived from five industrial approaches [Journal] // J. of
Systems and Software.. - 2007. - pp. 106-126.

Humble J. and Farley D. Continuous delivery: reliable software releases through build, test, and deployment automation
[Book]. - [s.l.] : Pearson Education, 2010.

IEEE Computer Society Model Process for Addressing Ethical Concerns During System Design, Standard IEEE 7000 [Journal].
- 2021.

Imai S. Is GitHub copilot a substitute for human pair-programming? an empirical study [Conference] // ACM/IEEE 44th Internatio-
nal Conference on Software Engineering: Companion Proceedings (ICSE ‚22). - Ney York : Association for Computing Machinery,
2022. - pp. 319-321.

INCOSE System Engineering Vision 2035 [Report]. - 2023.

Jamshidi P. [et al.] Microservices: The Journey So Far and Challenges Ahead [Journal]. - [s.l.] : IEEE Software, 2018. - 3 : Vol. 35.
- pp. 24-35.

Janssen N. The Data Science Talent Gap: Why It Exists And What Businesses Can Do About It [Online] //
Forbes Technology Council. - October 11, 2022. - https://www.forbes.com/sites/forbestechcouncil/2022/10/11/
the-data-science-talent-gap-why-it-exists-and-what-businesses-can-do-about-it/?sh=76439db23982.

Johnston D. Scientists Become Managers-The ‚T‘-Shaped Man [Journal] // IEEE Engineering Management Review. - 1978. - 3 :
Vol. 6. - pp. 67 - 68.

Jones M. Global Warming and System Safety [Journal] // Journal of System Safety. - 2022. - 3 : Vol. 57.

Kagermann H. [et al.] Fachforum autonome systeme im hightech-forum: autonome systeme–chancen und risiken für wirt-
schaft, wissenschaft und gesellschaft [Report]. - 2017.

Kästner C. and Kang E. Teaching software engineering for al-enabled systems [Conference] // 2020 IEEE/ACM 42nd Internatio-
nal Conference on Software Engineering: Software Engineering Education and Training (ICSE-SEET). - [s.l.] : IEEE, 2020.

Kim M. Research issues and challenges related to Geo-IoT platform [Journal]. - [s.l.] : Spatial Information Research, 2018.

Kläs M. and Sembach L. Uncertainty Wrappers for Data-driven Models - Increase the Transparency of AI/ML-based Models
through Enrichment with Dependable Situation-aware Uncertainty Estimates [Conference] // WAISE 2019 at Computer Safety,
Reliability, and Security (SAFECOMP 2019). - 2019.

Kleppman M. Designing data-intensive applications: The big ideas behind reliable, scalable, and maintainable systems [Book]. -
[s.l.] : O‘Reilly Media, Inc., 2017.

Klotins E. and Gorschek T. Continuous Software Engineering in the Wild [Article] // Software Quality: The Next Big Thing in
Software Engineering and Quality - 14th International Conference on Software Quality, {SWQD} 2022, Vienna, Austria, May
17-19, 2022, Proceedings. - Vienna, Austria, : [s.n.], May 17-19, 2022. - pp. 3-12.

Knauss A. [et al.] ACon: A learning-based approach to deal with uncertainty in contextual requirements at runtime [Journal]. -
[s.l.] : Information and Software Technology, 2016.

59

References

Koorosh A. [et al.] SafeDrones: Real-Time Reliability Evaluation of UAVs Using Executable Digital Dependable Identities [Confe-
rence] // Model-Based Safety and Assessment. IMBSA 2022.. - 2022. - Vols. Lecture Notes in Computer Science, vol 13525..

Küçük Y., Henderson T. and Podgurski A. Improving fault localization by integrating value and predicate based causal inferen-
ce techniques [Conference] // 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). - 2021.

Kuusisto M. Organizational effects of digitization: a literature review [Journal] // International Journal of Organization Theory
and Behaviour. - 2017. - 3 : Vol. 20. - pp. 341-362.

LaBerge L. [et al.] How COVID-19 has pushed companies over the technology tipping point—and transformed business forever
[Report]. - [s.l.] : McKinsey & Company, 2020.

Laney D. 3D data management: Controlling data volume, velocity and variety. [Report]. - Stamford : META Group Inc., 2001. - p.
4.

Li F. [et al.] Advances and emerging challenges in cognitive internet-of-things [Journal]. - [s.l.] : IEEE Transactions on Industrial
Informatics, 2019.

Li L. Reskilling and Upskilling the Future-ready Workforce for Industry 4.0 and Beyond [Journal] // Information Systems Frontiers.
- 2022.

Liu Z. and Wang J. Human-cyber-physical systems: concepts, challenges, and research opportunities [Journal]. - [s.l.] : Frontiers
of Information Technology & Electronic Engineering, 2020.

Mackenzie D. and Pearl J. The Book of Why: The New Science of Cause and Effect [Book]. - 2018.

Maier M. W. Architecting principles for systems-of-systems [Journal] // Systems Engineering. - 1998. - 4 : Vol. 1. - pp. 267-284.

Martinez-Fernández S. [et al.] Software Engineering for AI-Based Systems: A Survey [Journal] // ACM Transactions on Software
Engineering and Methodology. - 2022. - 2 : Vol. 31. - pp. 1-59.

Mascardi V. [et al.] Engineering Multi-Agent Systems: State of Affairs and the Road Ahead [Journal] // ACM SIGSOFT Software
Engineering Notes. - 2019. - 1 : Vol. 44. - pp. 18-28.

Mattos D. and Liu Y. On the use of causal graphical models for designing experiments in the automotive domain [Conference]
// Proceedings of the International Conference on Evaluation and Assessment in Software Engineering 2022. - 2022.

Mattos D. and Liu Y. On the Use of Causal Graphical Models for Designing Experiments in the Automotive Domain [Confe-
rence] // International Conference on Evaluation and Assessment in Software Engineering 2022 (EASE ‚22). - New York, NY, USA :
Association for Computing Machinery, 2022. - pp. 264-265.

McDermott T. [et al.] AI4SE and SE4AI: A Research Roadmap [Journal] // Insight. - 2020. - 1 : Vol. 23. - pp. 8-14.

Méndez Fernández D. and Passoth J. Empirical software engineering: from discipline to interdiscipline [Journal] // Journal of
Systems and Software. - 2019. - Vol. 148. - pp. 170-179.

Mennenga M. [et al.] Synthetic emergence as a functional unit for the environmental assessment of a system of systems [Con-
ference] // Procedia CIRP. - 2020. - pp. 393-398.

60

References

Mennenga M. [et al.] Synthetic emergence as a functional unit for the environmental assessment of a system of systems [Jour-
nal] // Procedia CIRP. - 2020. - Vol. 90. - pp. 393-398.

Miloslavskaya N. and Tolstoy A. Internet of Things: information security challenges and solutions [Journal] // Cluster Compu-
ting. - 2019. - pp. pp.103-119.

Möller U. and McCaffrey M. Levels without Bosses? Entrepreneurship and Valve’s Organizational Design [Book Section] // The
Invisible Hand in Virtual Worlds: The Economic Order of Video Games. - [s.l.] : Cambridge University Press, 2021.

Nazish M. and Banday M. Green internet of things: a study of technologies, challenges and applications [Conference] // Inter-
national Conference on Automation and Computational Engineering (ICACE). - 2018.

Nielsen B. A comprehensive review of data governance literature [Conference] // Selected Papers of the IRIS, n. 8. - [s.l.] : Asso-
ciation for Information Systems, 2017.

Niestroy I. and Meuleman L. Managing the implementation of the SDGs [Report]. - [s.l.] : European Public Administration
Country Knowledge, 2020.

Northrop L. [et al.] Ultra-large-scale systems: The software challenge of the future [Report]. - [s.l.] : Carnegie-Mellon Univ Pitts-
burgh Pa Software Engineering Inst., 2006.

O‘Neil C. Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy [Book]. - [s.l.] : Crown,
2016.

Paris T. [et al.] Teaching co-simulation basics through practice [Conference] // 2019 Summer Simulation Conference. - 2019.

Parrend P. and Collet P. A Review on Complex System Engineering [Journal] // J Syst Sci Complex. - 2022. - Vol. 33. - pp.
755–1784.

Partrdige D. and Wilks Y. Does AI have a methodology which is different from software engineering? [Journal] // Artificial
Intelligence Review. - 1987. - pp. 111-120.

Pasquale F. The Black Box Society: The Secret Algorithms That Control Money and Information [Book]. - [s.l.] : Harvard University
Press, 2015.

Pearl J. The seven tools of causal inference with reflections on machine learning [Journal] // Communications of the ACM. -
2019. - 3 : Vol. 62. - pp. 54-60.

Peter C. and Swilling M. Linking complexity and sustainability theories: Implications for modeling sustainability transitions
[Journal]. - [s.l.] : Sustainability, 2014.

Pinheiro M. and Souveyet C. Supporting context on software applications: a survey on context engineering [Conference] //
Modélisation et utilisation du contexte. - 2018.

Puryear B. and Sprint G. Github copilot in the classroom: learning to code with AI assistance. [Journal] // J. Comput. Sci. Coll.. -
2022. - 1 : Vol. 38. - pp. 37–47.

Rinehart D. J., Knight J. C. and Rowanhill J. Understanding What It Means for Assurance Cases [Report] : NASA/CR–2017-
219582. - [s.l.] : NASA, 2017.

61

References

Rockström J. [et al.] Planetary boundaries: exploring the safe operating space for humanity [Journal]. - [s.l.] : Ecology and socie-
ty, 2009.

Rodrigues A. [et al.] Enhancing context specifications for dependable adaptive systems: A data mining approach [Journal] //
Information and software technology. - 2019. - pp. 115-131.

Rodríguez-Pérez G., Nadri R. and Nagappan M. Perceived diversity in software engineering: a systematic literature review
[Journal] // Empirical Software Engineering. - 2021. - 102 : Vol. 26.

Runge J. [et al.] Detecting and quantifying causal associations in large nonlinear time series datasets [Journal] // Science advan-
ces. - [s.l.] : Science advances, 2019. - 11 : Vol. 5.

Rushby J. Runtime certification [Conference] // 8th International Workshop, RV 2008. - [s.l.] : Springer, 2008.

SafeTRANS Safety, Security, and Certifiability of Future Man-Machine Systems [Report]. - 2019.

Scharinger B. [et al.] Can RE Help Better Prepare Industrial AI for Commercial Scale? [Journal] // IEEE Software. - [s.l.] : IEEE Soft-
ware, 2022. - Vol. 39. - pp. 8-12.

Schlossnagle T. Monitoring in a DevOps World: Perfect should never be the enemy of better. [Journal] // Queue. - [s.l.] : Queue,
2017. - 6 : Vol. 15. - pp. 35-45.

Schmerl B. [et al.] Challenges in composing and decomposing assurances for self-adaptive systems [Conference] // Software
Engineering for Self-Adaptive Systems. - 2017.

Schneider C. and Betz S. Transformation²: Making software engineering accountable for sustainability [Journal] // Journal of
Responsible Technology. - 2022.

Schneider D. and Trapp M. B-space: dynamic management and assurance of open systems of systems [Journal]. - [s.l.] : Journal
of Internet Services and Applications, 2018.

Schneider D. Conditional Safety Certification for Open Adaptive Systems. - [s.l.] : Fraunhofer Verlag, 2014.

Schölkopf B. Causality for Machine Learning [Report]. - 2019.

Schranz M. [et al.] Swarm intelligence and cyber-physical systems: concepts, challenges and future trends [Journal]. - [s.l.] :
Swarm and Evolutionary Computation, 2021.

Scoones I. [et al.] Dynamic Systems and the Challenge of Sustainability, STEPS Working Paper 1 [Report]. - [s.l.] : Brighton:
STEPS Centre, 2007.

Seyff N. [et al.] The Elephant in the Room – Educating Practitioners on Software Development for Sustainability [Conference] //
2021 IEEE/ACM International Workshop on Body of Knowledge for Software Sustainability (BoKSS). - 2020. - pp. 25-26.

Siebert J. Applications of statistical causal inference in software engineering [Report]. - 2022.

Siebert J., Ciarletta L. and Chevrier V. Agents and artefacts for multiple models co-evolution. Building complex system simu-
lation as a set of interacting models [Conference] // Autonomous Agents and Multiagent Systems-AAMAS 2010. - 2010. - pp.
509-516.

62

References

Siedel G. [et al.] Utilizing Class Separation Distance for the Evaluation of Corruption Robustness of Machine Learning Classifiers
[Conference] // IJCAI-ECAI-22 Workshop on Artificial Intelligence Safety (AISafety 2022) . - 2022.

Siegenfeld A. F. and Bar-Yam Y. An Introduction to Complex Systems Science and Its Applications [Journal] // Complexity. -
2020. - Vol. 2020. - p. 16.

Singh S. [et al.] Challenges of digital twin in high value manufacturing [Journal]. - 2018.

Skulmowski A. and Rey G. COVID-19 as an accelerator for digitalization at a German university: Establishing hybrid campuses
in times of crisis [Journal] // Human Behavior and Emerging Technologies. - 2020. - Vol. 2. - pp. 212– 216.

Smite D. [et al.] Spotify Guilds: How to Succeed With Knowledge Sharing in Large-Scale Agile Organizations [Journal] // IEEE
Software. - 2019. - 2 : Vol. 36.

Snafucatchers consortium STELLA. Report from the SNAFUcatchers Workshop on Coping With Complexity [Report]. - Brook-
lyn NY : [s.n.], 2017.

Strietska-Ilina O. Skill shortages. Modernising vocational education and training-Fourth report on vocational education and
training research in Europe: background report [Report]. - 2008. - p. 72.

Sundberg N. Sustainable IT Playbook for Technology Leaders: Design and implement sustainable IT practices and unlock sustai-
nable business opportunities [Book]. - [s.l.] : Packt, 2022.

Taivalsaari A. and Mikkonen T. A roadmap to the programmable world: software challenges in the IoT era [Journal] // IEEE
software. - 2017.

Tavčar J. and Horvath I. A review of the principles of designing smart cyber-physical systems for run-time adaptation: Learned
lessons and open issues [Journal] // IEEE Transactions on Systems, Man, and Cybernetics. - [s.l.] : IEEE Transactions on Systems,
Man, and Cybernetics: Systems, 2018. - pp. 145-158.

Theobald S. and Diebold P. Interface problems of agile in a non-agile environment [Conference] // 19th International Confe-
rence on Agile Processes in Software Engineering and Extreme Programming (XP 2018). - 2018. - pp. 123-130.

Tian L. [et al.] Federated learning: Challenges, methods, and future directions [Journal] // IEEE Signal Processing Magazine. - [s.l.]
: IEEE signal processing magazine, 2020. - 3 : Vol. 37. - pp. 50-60.

Tisi M. [et al.] Towards Twin-Driven Engineering: Overview of the State-of-The-Art and Research Directions [Conference] //
Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems (APMS
2021). - [s.l.] : IFIP Advances in Information and Communication Technology, 2021. - Vol. 630.

Tlili S., Mnasri S. and Val T. A survey on iot routing: Types, challenges and contribution of recent used intelligent methods
[Conference] // 2nd International Conference on Computing and Information Technology (ICCIT). - [s.l.] : IEEE, 2022.

Tsigkanos C., Nastic S and Dustdar S. Towards resilient Internet of Things: Vision, challenges, and research roadmap [Confe-
rence] // IEEE 39th International Conference on Distributed Computing Systems (ICDCS). - 2019. - pp. 1754-1764.

Uday P. and Marais K. Designing resilient systems-of-systems: a survey of metrics, methods, and challenges [Journal] // Systems
Engineering. - 2015.

63

References

Vosoughi S., Roy D. and Aral S. The spread of true and false news online [Journal] // Science. - [s.l.] : science, 2018. - 6380 :
Vol. 359. - pp. 1146-1151.

Yang Y. [et al.] A Survey on Deep Learning for Software Engineering [Journal] // ACM Comput. Surv.. - [s.l.] : ACM Computing
Surveys (CSUR), 2022. - 10s : Vol. 54. - p. 73.

Younan M. [et al.] Challenges and recommended technologies for the industrial internet of things: A comprehensive review
[Journal] // Measurement. - 2020.

Zahidi S. [et al.] The Future of Jobs Report 2020 [Report]. - [s.l.] : World Economic Forum Platform for Shaping the Future of the
New Economy and Society, 2020. - p. 163.

Zhang J. M. [et al.] Machine learning testing: Survey, landscapes and horizons [Journal] // IEEE Transactions on Software Engi-
neering. - [s.l.] : IEEE Transactions on Software Engineering, 2022. - 1 : Vol. 40.

Zweig K. Ein Algorithmus hat kein Taktgefühl: Wo künstliche Intelligenz sich irrt, warum uns das betrifft und was wir dagegen
tun können [Book]. - [s.l.] : Heyne Verlag, 2019.

64

Appendix A – German research landscape

Here we indicate German research organizations that, from our point of view, can help implement the research roadmap for
dynaSoS. While this list is definitely not complete, it should provide a starting point for building networks and/or consortia of
organizations with the purpose of fostering collaboration on dynaSoS.

For the sake of transparency, we have put in bold face the names of the organizations whose individuals contributed to the
DynaSoS project. We take this opportunity to thank them once again for investing their invaluable time in sharing with us their
thoughts on challenges, recommendations, and research directions for dynaSoS.

Computer Science Research at Max Planck Institutes

The Max Planck Society is composed of several research institutions in Germany and abroad that carry out basic research in diffe-
rent knowledge fields. Among these, some institutes focus on Computer Science research, including the Max Planck Institute for
Informatics, the Max Planck Institute for Intelligent Systems, and the Max Planck Institute for Software and Systems.

DFKI

The German Center for Artificial Intelligence (DFKI) conducts research related to AI including cyber-physical systems and multi-
agent systems.

Fortiss

Fields of research include Architecture and Services for Critical Infrastructures, Human-centered Engineering, Industrial IoT, ML,
Model-based Engineering, and Software Dependability, among others.

Fraunhofer ICT Group

The Fraunhofer ICT Group as part of the Fraunhofer-Gesellschaft is the largest IT research organization in Europe. The Fraunhofer
ICT Group currently has 21 member institutes throughout Germany including, for instance, the Fraunhofer Institute for Software
and Systems Engineering ISST, the Fraunhofer Institute for Open Communication Systems FOKUS, the Fraunhofer Institute for
Intelligent Analysis and Information Systems IAIS, the Fraunhofer Institute for Cognitive Systems IKS, and the Fraunhofer Institute
for Experimental Software Engineering IESE.

FZI

Research areas Software Engineering, Embedded Systems and Sensors Engineering, Intelligent Systems and Production Enginee-
ring, and Information Process Engineering.

Appendix A – German research
landscape

�

�

�

�

�

https://www.cis.mpg.de/
https://www.dfki.de/web
https://www.fortiss.org/
https://www.iuk.fraunhofer.de/en/about-our-group/member-institutes.html
https://www.fzi.de/

65

Appendix A – German research landscape

German Institute of Urban Affairs

The institute carries out research on solutions for municipal challenges. It advises municipalities on different topics, such as intelli-
gent transport systems, sharing economy, smart city, and resilient cities, among others.

German Systems Engineering Society

The German Systems Engineering Society represents INCOSE in German-speaking countries. Working groups include AI-based
System, Model-based Systems Engineering, Moderate-Complex Systems, and Sustainability enabled by Systems Engineering.

Humboldt University Berlin

Software and Systems Engineering for Complex Safety-Critical Systems and Software Evolution

Institute for AI Safety and Security

Research fields include AI Engineering, Safety-critical Data Infrastructure, Execution Environments & Innovative Computing
Models, and Business Development and Strategy.

Institute for Product Engineering at KIT

Research groups include Advanced Systems Engineering, and Human-Machine Systems.

Institute of Information Security and Dependability

Research groups for Decentralized Systems and Network Services, Modelling for Continuous Software Engineering, Logic of
Autonomous Dynamical Systems, Dependability of Software-intensive Systems and Test, Validation and Analysis of Software-
Intensive Systems.

Karlsruhe Institute of Technology

Software Design and Quality, including the research groups “Modeling for Continuous Software Engineering” and “Dependabili-
ty of Software-intensive Systems”

Ludwig-Maximilians-Universität München (LMU)

Chair of Human-Centered Ubiquitous Media AG

�

�

�

�

�

�

�

�

https://difu.de/
https://www.gfse.de/
https://www.hu-berlin.de/
https://www.dlr.de/ki/en/desktopdefault.aspx/tabid-17270/27361_read-69839/
https://www.ipek.kit.edu/
https://www.dlr.de/ki/en/desktopdefault.aspx/tabid-17270/27361_read-69839/
https://www.kit.edu/
https://www.lmu.de/

66

Appendix A – German research landscape

National Academy of Science and Engineering

Topics include Energy & Resources, Healthcare technology, Circular Economy, Innovation, Digital & Self-learning, International
Cooperation, and Mobility, among others.

RheinMain University of Applied Sciences (HSRM)

Working group “Learning and Visual Systems”, member of the research focal area “Smart Systems for Man and Technology”.
Research topics include computer vision, ML, and data science, among others.

Rhineland-Palatinate Technical University (formerly Technical University of Kaiserslautern)

Chair of Software Engineering – Dynamic risk assessment and safety assurance under uncertainty; Chair of Artificial Intelligence;
Algorithmic Accountability Lab

Saarland University

Explainability and Perspicuous Computing – Research on many topics including CPS, dynamic dependable systems, dynamic and
hybrid systems, among others.

Safetrans

SafeTRANS is a not-for-profit association joining partners from industry and science across application domains. Its roadmap and
position paper »Safety, Security, and Certifiability of Future Man-Machine Systems« is closely related to dynaSoS and the recom-
mendation addressing safety and trustworthiness.

Technical University of Berlin

Information System Engineering – Research on many topics including automated driving, cloud-native architecture and enginee-
ring, AI-based data sovereignty, data-driven processes, and data management, among others.

Technical University of Munich (TUM)

Applied Software Engineering Group – Research fields include continuous software engineering, CPS, smart environments, and
ML applications, among others.

�

�

�

�

�

�

�

https://www.acatech.de/
https://www.hs-rm.de/
https://rptu.de/
https://www.uni-saarland.de/
https://www.safetrans-de.org/en/index.php
https://www.tu.berlin/
https://www.tum.de/

67

Appendix A – German research landscape

Universität Hamburg

Among the foci of the Department of Informatics are Human-Centered Computing (see Ethics in Information Technology),
Complex System Engineering (see Databases and Information Systems, Applied Software Technology, and Information System,
Socio-Technical System Design).

University of Braunschweig

Chair of Sustainable Manufacturing & Life Cycle Engineering including an SoS Engineering Research Group

University of Cologne

Software and Systems Engineering addressing Requirements Engineering and Data-driven Systems Engineering

University of Oldenburg

Department of Foundations and Applications of Systems of Cyber-Physical Systems for modeling, verification, and synthesis of
reactive, real-time, and hybrid dynamics in embedded and cyber-physical systems.

University of Rostock

Chair for Modeling and Simulation

University of Stuttgart

Institute of Software Engineering (Empirical Software Engineering Group); Institute for Visualization and Interactive Systems,
Human-Computer Interaction and Cognitive Systems Department

University of Ulm

Institute of Software Engineering and Programming Languages

�

�

�

�

�

�

�

https://www.uni-hamburg.de/
https://www.tu-braunschweig.de/
https://portal.uni-koeln.de/
https://uol.de/
https://www.uni-rostock.de/
https://www.uni-stuttgart.de/
https://www.uni-stuttgart.de/

DynaSoS AP1 Bericht Cover

68

69

Impressum

31st of January, 2023

IESE-001.23/E | public

The research described in this paper was performed in the DynaSoS project (grant no. 01IS21104) of the German Federal
Ministry of Education and Research (BMBF). We thank all external people who participated in the interviews and the work-
shops. We also thank Sonnhild Namingha for proofreading and the whole project team for their contributions.

Editorial office: Dr. Rasmus Adler, Dr. Frank Elberzhager, Prof. Dr.-Ing. Peter Liggesmeyer

Authors: Rasmus Adler, Frank Elberzhager, Rodrigo Falcão, Julien Siebert, Eduard C. Groen, Jana Heinrich, Florian Balduf

Graphics and layout: Stefanie Ludborzs, Patrick Mennig

Proofreading: Sonnhild Namingha

Image credits: Titelseite: © iStock.com/Anastasiia Shavshyna, Bearbeitung Fraunhofer IESE | Seite 7: © iStock.com/
dirkpurz | Seite 9: © iStock.com/LegART2 | Seite 14: © iStock.com/Oleh_Slobodeniuk | Seite 19: © iStock.com/
Mumemories | Seite 21: © iStock.com/nazar_ab | Seite 25: © iStock.com/redtea | Seite 34: © iStock.com/SHansche |
Seite 50: © iStock.com/Sholikhul Bakhmid | Seite 53: © istock.com/ Alexander Vasilyev | Seite 68: arquiplay77 – stock.
adobe.com

© Fraunhofer-Institut für Experimentelles Software-Engineering IESE, Kaiserslautern 2023

Fraunhofer IESE is an institute of the Fraunhofer-Gesellschaft.
The institute transfers innovative software development techniques,
methods, and tools into industrial practice.
 It helps companies to build up software competencies that meet
their needs and to achieve a competitive market position.
Fraunhofer IESE is headed by Prof. Dr.-Ing. Peter Liggesmeyer

Contact

Prof. Dr.-Ing. Peter Liggesmeyer

Executive and Scientific Director

peter.liggesmeyer@iese.fraunhofer.de

Fraunhofer IESE

Fraunhofer-Platz 1

67663 Kaiserslautern

www.iese.fraunhofer.de

Dr. Rasmus Adler

Research Program Autonomous Systems

rasmus.adler@iese.fraunhofer.de

Fraunhofer IESE

Fraunhofer-Platz 1

67663 Kaiserslautern

www.iese.fraunhofer.de

Dr. Frank Elberzhager

Architecture-Centric Engineering

frank.elberzhager@iese.fraunhofer.de

Fraunhofer IESE

Fraunhofer-Platz 1

67663 Kaiserslautern

www.iese.fraunhofer.de

70

	Introduction
	Project Overview
	Phase 1: Conceptualization
	Phase 2: Characterization
	Phase 3: Classification of challenges
	Phase 4: Recommendations

	Use cases and example systems
	Motivation for conceptualization work
	Overview of application areas
	Analysis of cross-cutting aspects

	Dimensions of dynaSoS
	Motivation
	Dimension related to scope of dynaSoS
	Dimension related to the dynaSoS characteristics
	Dimension related to the engineering of dynaSoS

	Research Challenges
	Scope
	Complexity, emergent phenomena and resilience
	AI-Based autonomy
	Heterogeneity and openness
	Distributed systems
	Continuous and innovation-driven development
	Engineering

	Recommendations, research directions and roadmap
	Recommendation: Value-based engineering of dynaSoS
	Recommendation: Engineering of emergence and resilience
	Recommendation: Engineering of safe and highly trustworthy dynaSoS
	Recommendation: Context-aware behavior in dynaSoS
	Recommendation: Automated software engineering for dynaSoS
	Recommendation: Reliable data management for dynaSoS
	Roadmap

	Summary and outlook
	References
	Appendix A – German research landscape
	Impressum

